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Abstract. The switch Markov chain has been extensively studied as the most natural Markov
Chain Monte Carlo approach for sampling graphs with prescribed degree sequences. In this work we
study the problem of uniformly sampling graphs for which, in addition to the degree sequence, joint
degree constraints are given. These constraints specify how much edges there should be between two
given degree classes (i.e., subsets of nodes that all have the same degree). Although the problem was
formalized over a decade ago, and despite its practical significance in generating synthetic network
topologies, small progress has been made on the random sampling of such graphs. In the case of one
degree class, the problem reduces to the sampling of regular graphs (i.e., graphs in which all nodes
have the same degree), but beyond this very little is known. We fully resolve the case of two degree
classes, by showing that the switch Markov chain is always rapidly mixing. We do this by combining
a recent embedding argument developed by the authors in combination with ideas of Bhatnagar,
Randall, Vazirani and Vigoda (2006) introduced in the context of sampling bichromatic matchings.
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1. Introduction. The (approximate) uniform sampling of simple graphs with
given degrees is a problem that has been studied extensively in the last couple of
decades. One prominent approach is the Markov Chain Monte Carlo method, with
the most notable example being the switch Markov chain. Here, starting from a
graph with the target degree sequence, one repeatedly selects uniformly at random
two edges and “switches” them if this preserves the simplicity of the graph (see Figure
2). Typically, the goal is to show that the induced Markov chain is rapidly mixing,
i.e., that only a polynomial number of steps (as a function of the number of vertices)
is needed to get close to the uniform distribution over all graphs with the given
degree sequence. The switch chain has been shown to be rapidly mixing for various
degree sequences but it is still open whether or not it is rapidly mixing for all degree
sequences; see [3, 14] for the state of the art.

In this work, we focus on the problem where, in addition to the degree sequence,
a so-called joint degree matrix with degree correlations is specified. This matrix
encodes how many edges there should be between nodes of different degrees. The
motivation for using such a metric is that this extra information restricts the space of
possible realizations to graphs with more desirable structure. This was first observed
by Mahadevan et al. [26] who argued that the joint degree matrix is a much more
reliable metric for a synthetic graph (i.e., a graph not obtained from empirical data but
generated by a random graph model) to resemble a real network topology, compared
to just using the degree sequence. The joint degree matrix model of Amanatidis,
Green, and Mihail [1] formalizes this approach as follows.

Suppose we are given a degree sequence d = (di)i∈V , specifying the degree of each
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node of V , where |V | = n, and a joint degree matrix c = (cij)i,j∈[q] specifying the
number of edges between nodes of different degrees, where q is the maximum degree
in the sequence d. A graph G = (V,E) with degree sequence d, for which there are
precisely cij edges between nodes of degree i and degree j for every pair (i, j), is called
a realization of the pair (c,d). We write G(c,d) to denote the set of all such graphs.
We want to approximately uniformly sample graphs from G(c,d).

Example 1.1. We let n = 11, and consider the degree sequence d and joint degree
matrix c given by

c =


0 0 0 0
0 0 0 0
0 0 7 4
0 0 4 8

 and d = (3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4) .

This means that there are six nodes of degree three, five nodes of degree four, and
there are in total four edges between the nodes of degree three and four. In Figure 1
below we give a possible realization of (c,d).

V3 V4

Fig. 1. An example of a realization for (c,d) as given in Example 1.1.

Although there are polynomial-time algorithms that produce a realization of a
given degree sequence and joint degree matrix [1,2,11,19,30], almost nothing is known
about how to uniformly sample a realization from G(c,d) efficiently. The only related
work here is that of Erdős et al. [17] who show rapid mixing on the subset of balanced
joint degree matix realizations (see Section 1.1 for a description of this problem). In
this work we provide the first polynomial-time sampling results for the case of any
two degree classes. The instance in Figure 1 is an example of this case.

In particular, we bound the mixing time of the arguably most natural Markov
chain on the set of all graphs with a given joint degree matrix, the (restricted) switch
Markov chain. Bounding the mixing time of this chain has been an open problem
since the introduction of the joint degree matrix model [1, 17, 30]. It proceeds by
repeatedly selecting two edges of a realization and rewiring them if possible, while
preserving the degree sequence and the joint degree matrix. An example is given in
Figure 2.

Although the switch Markov chain has been extensively studied for the uniform
sampling of graphs with a given degree sequence (without a joint degree matrix),
nothing is known when additionally degree correlation constraints are given (in [17]
the switch chain is considered for the balanced joint degree matrix problem).

The main contribution of this work is showing that the switch chain is always
rapidly mixing on the space of realizations of a given joint degree matrix with two
degree classes (Theorem 3.1). Despite being for the case of two classes, this is the
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Fig. 2. Example of a switch in which edges {v, w}, {x, y} are replaced by {v, y}, {x,w}. Such
a switch operation always preserves the degree sequence of a graph, although not necessarily joint
degree constraints.

very first rapid mixing result for the problem of sampling from G(c,d). The proof
consists of two main ingredients.

We first analyze an auxiliary chain, the so-called hinge flip chain (see Figure 3 for
an example of a hinge flip). The state space of this Markov chain also contains graphs
with a slightly perturbed degree sequence or joint degree matrix (c′,d′) compared to
(c,d). Therefore, we study this chain in the more general so-called partition adjacency
matrix (PAM) model [10, 15] for two classes and show it is rapidly mixing in case
the pair (c,d) comes from a class of strongly stable pairs. The PAM model is a
generalization of the JDM model in which nodes within the same partition do not
necessarily have the same degree (Section 2.2). Strong stability refers to the fact that
any graph that has a slightly perturbed degree sequence or joint degree matrix (c′,d′)
can be turned into a graph satisfying the constraints of (c,d) with only a few hinge
flips. This is a generalization of the notion of strong stability introduced in [4] for
degree sequences.

Establishing the rapid mixing of the hinge flip chain in our setting presents sig-
nificant challenges. To attack this problem, we partly rely on ideas introduced by
Bhatnagar, Randall, Vazirani and Vigoda [5] in the context of sampling exact (perfect)
matchings.1 At the core of this approach lies the mountain climbing problem [21,31].
Secondly, we use an embedding argument similar to that in [4] to show that the rapid
mixing of the hinge flip Markov chain can be carried over to the switch Markov chain
in the case of strongly stable pairs (c,d) for the joint degree matrix model with two
degree classes.

As a byproduct of our analysis for the hinge flip chain, we obtain the first fully
polynomial almost uniform generator for sampling realizations of certain sparse PAM
instances with two partition classes (Corollary 4.3).

1.1. Further Related Work. The joint degree matrix model was first studied
by Patrinos and Hakimi [28], albeit with a different formulation and name, and was
reintroduced in Amanatidis et al. [1]. While it has been shown that the switch chain
restricted on the space of the realizations of any given joint degree matrix is irreducible
[1,11], almost no progress has been made towards bounding its mixing time. Stanton
and Pinar [30] performed experiments based on the autocorrelation of each edge,
suggesting that the switch chain mixes quickly. The only relevant result is that of
Erdős et al. [17] showing rapid mixing for a related Markov chain over the restricted
subset of so-called balanced joint degree matrix realizations with an arbitrary number
of degree classes. A realization is balanced if the following is satisfied for all pair
of degree classes: If one considers the edges between two degree classes, then every
node in a given class should be adjacent to roughly the same number of edges (with

1 For a given red-blue edge-colored undirected graph G and k ∈ N , a perfect matching is called
exact if it has precisely k red edges.
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a difference of at most one).
Our hinge-flip Markov chain is essentially a generalization of (a variant of) a

Markov chain introduced by Jerrum and Sinclair [23].
The switch Markov chain for sampling graphs with a given degree sequence (with-

out joint degree matrix) has been studied extensively, see, e.g., [3, 6–9, 14, 16, 17, 20,
24, 27]. Switch-based Markov chain have also been studied for sampling connected
graphs [18] and (perfect) matchings, see, e.g., [13] and references therein.

1.2. Outline. Section 2 contains all the necessary preliminaries, beginning with
all needed Markov chain definitions and facts. Then the PAM and the JDM models
are introduced, along with the corresponding Markov chains: the hinge flip chain
and the switch chain. In Section 3 we first show rapid mixing of the hinge flip chain
for strongly stable instances. After showing that all JDM instances with two degree
classes are strongly stable, we prove that the rapid mixing of the hinge flip chain in
this case implies the rapid mixing of the switch chain. Finally, in Section 4 we show
rapid mixing of the hinge flip chain for certain sparse PAM instances.

2. Preliminaries. We begin with the necessary background on Markov chains
and the multicommodity flow method of Sinclair [29]. For Markov chain definitions
not given here, see, e.g., [25].

Let M = (Ω, P ) be an ergodic, time-reversible Markov chain over state space
Ω with transition matrix P and stationary distribution π. We write P t(x, ·) for the
distribution over Ω at time step t given that the initial state is x ∈ Ω. The total
variation distance at time t with initial state x is

∆x(t) = dTV (P
t(x, ·), π) = max

S⊆Ω

∣∣P t(x, S)− π(S)
∣∣ = 1

2

∑
y∈Ω

∣∣P t(x, y)− π(y)
∣∣ ,

and the mixing time τ(ϵ) is defined as

τ(ϵ) = max
x∈Ω

{
min{t : ∆x(t

′) ≤ ϵ for all t′ ≥ t}
}
.

Informally, τ(ϵ) is the number of steps until the Markov chain is ϵ-close to its station-
ary distribution independently of the initial state x ∈ Ω. A Markov chain is said to
be rapidly mixing if the mixing time can be upper bounded by a function polynomial
in ln(|Ω|/ϵ).

It is well-known that, since the Markov chain is time-reversible, the matrix P
only has real eigenvalues 1 = λ0 > λ1 ≥ λ2 ≥ · · · ≥ λ|Ω|−1 > −1. We may replace
the transition matrix P of the Markov chain by (P + I)/2, to make the chain lazy,
and hence guarantee that all its eigenvalues are non-negative. It then follows that the
second-largest eigenvalue of P is λ1. In this work we always consider the lazy versions
of the Markov chains involved. It follows directly from Proposition 1 in [29] that

τ(ϵ) ≤ 1

1− λ1

(
ln(1/π∗) + ln(1/ϵ)

)
,

where π∗ = minx∈Ω π(x). For the special case where π is the uniform distribution,
the above bound becomes

τ(ϵ) ≤ 1

1− λ1
(ln(|Ω|) + ln(1/ϵ)) .

The quantity (1−λ1)−1 can be upper bounded using the multicommodity flow method
of Sinclair [29], outlined next.
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We define the state space graph of the chain M as the directed graph G with
node set Ω that contains exactly the edges (x, y) ∈ Ω × Ω for which P (x, y) > 0
and x ̸= y. Let P = ∪x ̸=yPxy, where Pxy is the set of simple paths between x and
y in the state space graph G. A flow f in Ω is a function P → [0,∞) satisfying∑
p∈Pxy

f(p) = π(x)π(y) for all x, y ∈ Ω, x ̸= y. The flow f can be extended to a

function on oriented edges of G by setting f(e) =
∑
p∈P:e∈p f(p), so that f(e) is the

total flow routed through e ∈ E(G). Let ℓ(f) = maxp∈P:f(p)>0 |p| be the length of a
longest flow carrying path, and let ρ(e) = f(e)/Q(e) be the load of the edge e, where
Q(e) = π(x)P (x, y) for e = (x, y). The maximum load of the flow is

ρ(f) = maxe∈E(G) ρ(e). Sinclair ( [29], Corollary 6 ′) shows that

(1− λ1)
−1 ≤ ρ(f)ℓ(f) .

We use the following standard technique for bounding the maximum load of a flow
in case the chain M has uniform stationary distribution π. Suppose θ is the smallest
positive transition probability of the Markov chain between two distinct states. If b
is such that f(e) ≤ b/|Ω| for all e ∈ E(G), then it follows that ρ(f) ≤ b/θ. Thus, we
have

τ(ϵ) ≤ ℓ(f) · b
θ

ln(|Ω|/ϵ) .

Now, if ℓ(f), b and 1/θ can be bounded by a function polynomial in log(|Ω|), it follows
that the Markov chain M is rapidly mixing. In this case, we say that f is an efficient
flow. Note that in this approach the transition probabilities do not play a role as long
as 1/θ is polynomially bounded.

2.1. JDM Model and the Restricted Switch Chain. Here we describe the
joint degree matrix model, which is a special case of the partition adjacency model
that will be described in Section 2.2.

Let V = {1, . . . , n} be a set of nodes. An instance of the joint degree matrix (JDM)
model is given by a partition V1 ∪ V2 ∪ · · · ∪ Vq of V into pairwise disjoint (degree)
classes, a symmetric joint degree matrix c = (cij)i,j∈[q] of non-negative integers, and a
sequence d = (d1, . . . , dq) of non-negative integers.

2 Note that in the related literature
the dis are often assumed to be pairwise distinct; however, we do not need this
additional assumption for our results. We say that the tuple ((Vi)i∈q, c,d) (or just
(c,d) when it is clear what the partition is) is graphical, if there exists a simple,
undirected, labeled graph G = (V,E) on the nodes in V such that all nodes in Vi
have degree di and there are precisely cij edges between nodes in Vi and Vj . Such a
G is called a realization of the tuple. We let G((Vi)i∈q, c,d), or just G(c,d), denote
the set of all realizations of ((Vi)i∈q, c,d). We focus on the case of q = 2, i.e., when
two degree classes are given.

While switches maintain the degree sequence, this is no longer true for the joint
degree constraints. However, some switches do respect these constraints as well, e.g.,
if w, y in Figure 2 are in the same degree class. Thus, we are interested in the following
(lazy) restricted switch Markov chain for sampling realizations of G(c,d).

2 This is shorthand notation. More formally, we could write d̂ = (d̂1, . . . , d̂n) =
(
d11, . . . , d

|V1|
1 ,

. . . , d1q , . . . , d
|Vq|
q

)
corresponding to the definition of a graphical degree sequence. In such a case,

dji = di for i ∈ V and j ∈ {1, . . . , |Vi|}.
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Let G ∈ G(c,d) be the current state of the (restricted) switch chain:

• With probability 1/2, do nothing.

• Otherwise, attempt to perform a switch operation: select two edges {a, b} and
{x, y} uniformly at random, and select a perfect matching M on nodes {x, y,
a, b} uniformly at random. If M ∩E(G) = ∅ and G+M − ({a, b} ∪ {x, y}) ∈
G(c,d), then delete {a, b}, {x, y} from E(G) and add the edges of M .

Theorem 2.1 below, that summarizes some properties of the restricted switch
chain, follows from [1,11].

Theorem 2.1. This restricted switch chain is irreducible, aperiodic and symmet-
ric. Like the switch chain defined above, P (G,G′)−1 ≤ n4 for all adjacent G,G′ ∈
G′(c,d), and also the maximum in- and out-degrees of the state space graph are at
most n4.

For simplicity, in what follows we will drop the term restricted and we will simply
refer to the switch chain.

2.2. PAM Model and the Hinge Flip Chain. We describe the partition
adjacency matrix (PAM) model [1,10], that generalizes the joint degree matrix model
(which was discussed in the Introduction and formally defined in Subsection 2.1). The
main difference is that in the PAM model the nodes within a given class need not
have the same degrees. Like before, there is a partition of the nodes and there are
edge requirements between any two sets of this partition, but now the degrees within
each such set can be specified by an arbitrary degree sequence.

Formally, let V = {1, . . . , n} be a given set. An instance of the partition adjacency
matrix model is given by a partition V1∪V2∪· · ·∪Vq of V into pairwise disjoint classes.
Moreover, we are given a symmetric partition adjacency matrix c = (cij)i,j∈[q] of non-
negative integers, and a sequence d = (d1, . . . , dn) of non-negative integers. We say
that the tuple ((Vi)i∈q, c,d) is graphical if there exists a simple, undirected, labeled
graph G = (V,E) on the nodes in V with node v ∈ V having degree dv, and so that
there are precisely cij edges between endpoints in Vi and Vj . The graph G is then
called a realization of the tuple. We let G((Vi)i∈q, c,d) denote the set of all realizations
of the tuple ((Vi)i∈q, c,d). We often write G(c,d) instead of G((Vi)i∈[q], c,d) when it
is clear what the partition is.

In this work we focus on the case of a partition into two classes V1 and V2, and,
without loss of generality, assume that 1 ≤ c12 ≤ |V1| · |V2| − 1. Indeed, it is not
hard to see that the cases c12 ∈ {0, |V1| · |V2|} reduce to the single class case. For the
case of two classes, an initial state can be computed in polynomial time [15].3 We let
G′(c,d) = ∪(c′,d′)G′(c′,d′) with (c′,d′) ranging over tuples satisfying

(i)
∑n
i=1 di − d′i = 0 ,

(ii)
∑n
i=1 |di − d′i| ∈ {0, 2, 4} ,

(iii) c′12 ∈ {c12 − 1, c12, c12 + 1} .

The set G′(c,d) contains all graphs that possibly have a slightly different number of
cut edges, as well as at most four nodes who have a slightly different degree than in

3 For general instances, it is not known if an initial state can be computed in time polynomial in
n. It is conjectured to be NP-hard in general [15]; see also [12].
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the sequence d. We call elements in G′(c,d) \G(c,d) perturbed (auxiliary) states. For
any G ∈ G′(c,d) the perturbation at node v ∈ V is defined as αv = d′v−dv where d′ is
the degree sequence of G. We say that the node v has a degree surplus if αv > 0 and a
degree deficit if αv < 0. Moreover, the total degree surplus is defined as

∑
v:αv>0 αv,

and the total degree deficit as −
∑
v:αv<0 αv. Note that

∑
v:αv>0

αv −
∑

v:αv<0

αv =

n∑
i=1

|di − d′i| .

Finally, we say that a tuple (c′,d′) is edge-balanced if c′ = c (but possibly d′ ̸= d).
From the conditions defining G′(c,d), we may infer the following properties.

Proposition 2.2. For any G ∈ G′(c,d), for some tuple (c′,d′) satisfying (i)-(iii)
above, it holds that

(a) the perturbation at node v satisfies αv ∈ {−2,−1, 0, 1, 2} for any v ∈ V ,

(b) maxi,j=1,2 |cij − c′ij | ≤ 1, and
∑

1≤i≤j≤2 |cij − c′ij | ∈ {0, 2}.

Proof. If there is some node with degree surplus greater than or equal to three,
then the total degree deficit is also at least three, which follows from the first condition
defining G′(c,d). This means that

∑n
i=1 |di − d′i| ≥ 6, which violates the second

condition defining G′(c,d). The same argument holds in case there is some node with
degree deficit greater than or equal to three.

To see that the second property is true, notice that, because of (iii) in the def-
inition of G′(c,d), we only need to consider the cases where c′ii ≥ cii + 2, for some
i ∈ {1, 2}, or c′ii ≤ cii − 2, for some i ∈ {1, 2}. Let us assume c′11 ≥ c11 + 2. Since
c′12 ∈ {c12 − 1, c12, c12 + 1}, by (iii), it must be that the total degree surplus of the
nodes in V1 is at least three. This gives a contradiction by arguing exactly like in the
first part of the proof above. Analogous arguments hold for the other three cases as
well.

Finally, the last property is a direct consequence of maxi,j=1,2 |cij − c′ij | ≤ 1 and
the fact that

∑
i,j=1,2 |cij − c′ij | is an even number, because of (i) in the definition of

G′(c,d).

Remark 2.3. As we focus on the case in which V is partitioned into two classes
V1 and V2 here, we will sometimes use shorthand notation. Given a sequence d, the
number γ = c12 uniquely determines the matrix c. Hence, the set G((V1, V2), c,d)
(or, its simplified version G(c,d)) is then denoted by G(V1, V2, γ,d) (or, respectively,
G(γ,d)). Similarly for we write G′(γ,d) instead of G′((V1, V2), c,d).

We define the hinge flip Markov chain M(γ,d) on G′(γ,d) as follows.

Let G ∈ G′(γ,d) be the current state of the hinge flip chain:

• With probability 1/2, do nothing.

• Otherwise, attempt to perform a hinge flip operation: select an ordered triple
i, j, k of nodes uniformly at random. If {i, j} ∈ E(G), {j, k} /∈ E(G), and
G− {i, j}+ {j, k} ∈ G′(γ,d), then delete {i, j} and add {j, k}.

Note that we can check if G − {i, j} + {j, k} ∈ G′(γ,d) in time polynomial in n
based on the state G.
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Fig. 3. Example of a hinge flip operation for the ordered triple (i, j, k).

Graphs G,G′ ∈ G′(γ,d) are said to be adjacent in M if G can be obtained from
G′ with positive probability in one transition of the chain M. We say that two graphs
G,G′ are within distance r in M if there exists a path of at most length r from G to
G′ in the state space graph of M. By dist(G, γ,d) we denote the minimum distance of
G from an element in G(γ,d). The following parameter is the analogue of k(d) of [4]
for the current setting and will be used in a similar manner to define the appropriate
variant of strong stability.

We define

(2.1) k(γ,d) = max
G∈G′(γ,d)

dist(G, γ,d) .

In the PAM model with two degree classes, a family D of graphical tuples (γ,d)
is called strongly stable if there exists a constant k such that k(γ,d) ≤ k for all
(γ,d) ∈ D.

Theorem 2.4. Let D be a strongly stable family of graphical tuples. Then for
every (γ,d) ∈ D, the chain M(γ,d) is irreducible, aperiodic and symmetric, and,
hence, has uniform stationary distribution over G′(γ,d). Moreover, P (G,G′)−1 ≤ n3

for all adjacent G,G′ ∈ G′(γ,d), and also the maximum in- and out-degrees of the
state space graph of the chain M(γ,d) are bounded by n3.4

Proof. The only claim that requires a detailed argument, and uses the assumption
of strong stability, is that of the irreducibility of the chain. By definition of strong
stability, we always know that every perturbed state is connected to some element in
G(γ,d) so it suffices to show that there is a path between any two states in G(γ,d).
This follows from the analysis in Section 3. Aperiodicity follows from the holding
probability in the description of the chain M, and symmetry is straightforward. The
bound on P (G,G′)−1 follows directly from the description of the chain, as do the
bounds on the in- and out-degrees of the state space graph.

Remark 2.5. In general, the space of all realizations satisfying a given partition
adjacency matrix constraint with two classes is not connected under switches [15],
which is true in the special case of the joint degree matrix model (see next section).
However, it is shown in [15] that it is connected if one also allows double switches,
in which one is, roughly speaking, allowed to perform two switches simultaneously
(these double switches are only needed in rare, well characterized cases).

3. Switch Chain for 2-Class JDM Instances. In this section we show that
the switch chain defined in Subsection 2.1 is always rapidly mixing for JDM instances
with two degree classes. The formal statement is as follows.

4 It might be the case that the chain is always irreducible, even if D is not strongly stable, but
this is not relevant at this point. The assumption of strong stability allows for a shortcut in the
proof of irreducibility.



RAPID MIXING OF THE SWITCH CHAIN FOR 2-CLASS JOINT DEGREE MATRICES 9

Theorem 3.1. Let D be the family of instances of the joint degree matrix model
with two degree classes. Then the switch chain is rapidly mixing for instances in D.

The proof of Theorem 3.1 consists of three parts. In analogy to the approach taken
in [4], we first analyze a simpler Markov chain, called the hinge flip chain, that adds
and removes (at most) one edge at a time (see Figure 3). The hinge flip chain might
slightly violate the degree constraints, as well as the joint degree constraints. The
definition of strong stability used in [4] for degree sequences is appropriately adjusted
here to account for both deviations from the original requirements. In Section 3.2 we
show that instances of the JDM model with two degree classes are indeed strongly
stable under this definition. Finally, we use a similar embedding argument as in [4]
to argue that the (restricted) switch chain is rapidly mixing. Next, we give a more
detailed description of these three parts.

Proof overview. The first step of the proof is to show that the hinge flip chain
defined on a strict superset of the state space mixes rapidly for strongly stable in-
stances. This is done in Section 3.1. The auxiliary states have the property that the
joint degree constraint may only be violated slightly, by an additive value of one to be
precise. In order to overcome the difficulties that arise due to the fact that the number
of edges across the two degree classes should remain almost the same, we use ideas
introduced by Bhatnagar et al. [5] for uniformly sampling bichromatic matchings. In
particular, in the circuit processing part of the proof, we process a circuit at multiple
places simultaneously in case there is only one circuit in the canonical decomposition
of a pairing; or we process multiple circuits simultaneously in case the decomposition
yields multiple circuits. At the core of this approach lies a variant of the mountain
climbing problem [21, 31]. In our case the analysis is more involved than that of [5],
and we therefore use different arguments in various parts of the proof.

It is interesting to note that the analysis of the hinge flip chain is not carried out
in the JDM model but in the more general partition adjacency matrix model (Section
2.2). The difference from the JDM model is that in each class Vi the nodes need not
have the same degree but rather follow a given degree sequence of size |Vi|. Given
that small deviations from the prescribed degrees cannot be directly handled—by
definition—by the JDM model, the PAM model is indeed a more natural choice for
this step.

Next, in Section 3.2, we show that for any JDM instance, any graph in the state
space of the hinge flip chain (i.e., graphs that satisfy or almost satisfy the joint degree
requirements) can be transformed to a realization of the original instance within 11
hinge flips at most. That is, the set of JDM instances is a strongly stable family of
instances of the PAM model and thus the hinge flip chain mixes rapidly for JDM
instances.

The final step is an embedding argument for transforming the efficient flow for
the hinge flip chain to an efficient flow for the switch chain similar to that in [4]. This
step is presented in Section 3.3.

3.1. Rapid Mixing of the Hinge Flip Chain. In this section we show that
the hinge flip chain is rapidly mixing for strongly stable tuples (Theorem 3.2). We
prove Theorem 3.2 based on ideas introduced in [5]. Throughout this section we
always consider tuples (γ,d) coming from strongly stable families.

Theorem 3.2. Let D be a strongly stable family of tuples (γ,d) with respect to
some constant k. Then there exist polynomials p(n) and r(n) such that for any (γ,d) ∈
D, with d = (d1, . . . , dn), there exists an efficient multicommodity flow f for the hinge
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flip chain M(γ,d) on G′(γ,d) satisfying maxe f(e) ≤ p(n)/|G′(γ,d)| and ℓ(f) ≤ r(n).
Hence, the hinge flip chain M(γ,d) is rapidly mixing for families of strongly stable
tuples.

We will use the following lemma in order to simplify the proof of Theorem 3.2.

Lemma 3.3. Let f ′ be a flow that routes 1/|G′(γ,d)|2 units of flow between any
pair of states in G(γ,d) in the chain M(γ,d), so that f ′(e) ≤ b/|G′(γ,d)| for all e
in the state space graph of M(γ,d). Then f ′ can be extended to a flow f that routes
1/|G′(γ,d)|2 units of flow between any pair of states in G′(γ,d) with the property that
for all e

(3.1) f(e) ≤ q(n)
b

|G′(γ,d)|
,

where q(·) is a polynomial whose degree only depends on k(γ,d) (≤ k). Moreover,
ℓ(f) ≤ ℓ(f ′) + 2k(γ,d).

Proof. We extend the flow f ′ to f as follows. For any G ∈ G′(γ,d) \ G(γ,d) fix
some ϕ(G) ∈ G(γ,d) within distance k of G (which exists by assumption of strong
stability), and fix some path in the state space graph from G to ϕ(G) of length at
most k. Moreover, define ϕ(H) = H for all H ∈ G(γ,d). The flow between G and
any given G′ ∈ G′(γ,d) is now sent as follows.

First route 1/|G′(γ,d)|2 units of flow from G to ϕ(G) over the fixed path from
G to ϕ(G). Then use the flow-carrying paths used to send 1/|G′(γ,d)|2 units of flow
between ϕ(G) and ϕ(G′) as in the flow f ′ (note that in general multiple paths might
be used for this in the flow f ′). Finally, use the reverse of the fixed path from G′

to ϕ(G′) to route 1/|G′(γ,d)|2 from ϕ(G′) to G′. For any H ∈ G(γ,d), we have
|ϕ−1(H)| ≤ poly(nk), as the in- and out-degrees of the nodes in the state space graph
of M(γ,d) are polynomially bounded. It can then be shown that this extension of f ′,
yielding the flow f , only gives an additional term of at most poly(nk) b

|G′(γ,d)| to the

congestion of every edge in the state space graph of the chain M(γ,d) in the flow f ′.
Hence, the extended flow f satisfies (3.1) for some appropriately chosen polynomial
q(n).

Because of Lemma 3.3 it now suffices to show that there exists a flow f ′ that
routes 1/|G′(γ,d)|2 units of flow between any two pair of states in G(γ,d), in the state
space graph of the chain M(γ,d), with the property that f ′(e) ≤ p(n)/|G′(γ,d)|, and
ℓ(f ′) ≤ q(n) for some polynomials p(·), q(·) whose degrees may only depend on k(γ,d).
Note that f ′ is not a feasible multi-commodity flow as defined in Section 2, but should
rather be interpreted as an intermediate flow. The proof of Theorem 3.2 will consist of
multiple parts following, conceptually, the proof template in [7] developed for proving
rapid mixing of the switch chain for regular graphs. The main difference is that for
the so-called canonical paths between states we rely on ideas introduced in [5].

3.1.1. Canonical Paths. We first introduce some basic terminology similar to
that in [7]. Let V be a set of labeled nodes and let ≺V be a total ordering of the
nodes. Let ≺E be the total order on the set {{v, w} : v, w ∈ V } given by lexicographic
comparison based on ≺V , and let ≺C be a total order on all circuits on the complete
graph KV , i.e., ≺C is a total order on the closed walks in KV that visit every edge at
most once. We fix for every circuit one of its nodes where the walk begins and ends.

For given G,G ∈ G(γ,d), let H = G△G′ be their symmetric difference. We refer
to the edges in G G′ as blue, and the edges in G′ G as red. A pairing of red and
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blue edges in H is a bijective mapping that, for each node v ∈ V , maps every red
edge adjacent to v, to a blue edge adjacent to v. The set of all pairings is denoted by
Ψ(G,G′), and, with θv the number of red edges adjacent to v (which is the same as
the number of blue edges adjacent to v), we have |Ψ(G,G′)| = Πv∈V θv!.

Remember that we are considering an instance of the PAM model with two classes
V1 and V2. For a given realization G ∈ G(γ,d) we say that e ∈ E(G) is a cut edge if
it has an endpoint in both V1 and V2. Otherwise we say that e is an internal edge,
as both endpoints either lie both in the class V1 or both in class V2.

Similar to the approach in [7], the goal is to construct for each pairing ψ ∈
Ψ(G,G′) a canonical path from G to G′ that carries a fraction |Ψ(G,G′)|−1 of the
total flow from G to G′ in f ′. For a given pairing ψ and the total order ≺E given
above, we first decompose H into the edge-disjoint union of circuits in a canonical
way. We start with the lexicographically least edge w0w1 in EH and follow the pairing
ψ until we reach the edge wkw0 that was paired with w0w1. This defines the circuit
C1 (which is indeed a closed walk). If C1 = EH , we are done. Otherwise, we pick
the lexicographically least edge in H C1 and repeat this procedure. We continue
generating circuits until EH = C1 ∪ · · · ∪ Cs. Note that all circuits have even length
and alternate between red and blue edges, and that they are pairwise edge-disjoint.

We form a path from G to G′ in the state space graph of the chain M(γ,d) by
changing the blue edges of G into the red edges of G′ using hinge flip operations. For
certain pairings this can be done in a straightforward way, but in general this is not
the case. As a warm-up, we first consider a simple case (this case essentially describes
how we would process the circuits in case there is only one class).

Warm-up example. If for every i, the circuit Ci exclusively consists of internal
edges, only within V1 or only within V2, or exclusively of cut edges, then circuits can
be processed according to the ordering ≺C as follows. Let C = x0x1x2 . . . xqx0 be
a circuit, and assume w.l.o.g. that x0x1 is the lexicographically smallest blue edge
adjacent to the starting node x0 of the circuit. The processing of C now consists of
performing a sequence of hinge flips on the ordered pairs (xi−1, xi, xi+1) for i = 1, . . . , q
with the convention that xq+1 = x0. This is illustrated in Figures 4, 5 and 6 for an
example of C as illustrated in Figure 4 on the left. We have also indicated the degree
surplus and deficit at every step. By assumption, the edges of C either are all internal
edges or all cut edges. Therefore, throughout the processing of C, we never violate
the constraint that there should be γ edges between the classes V1 and V2, and, in
particular, this implies that every intermediate state is an element of G′(γ,d).

x0/x3

x1

x2 x4

x5/x8

x6

x7x9

x0/x3

x1

x2 x4

x5/x8

x6

x7x9

+1

−1

Fig. 4. The circuit C = x0x1x2x3x4x5x6x7x8x9x0 with x0 = x3 and x5 = x8. The blue edges
are represented by the solid edges, and the red edges by the dashed edges (left). The edge x0x1 is
removed and x1x2 is added (right).
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x0/x3

x1

x2 x4

x5/x8

x6

x7x9

−1

+1

v/x3

x1

x2 x4

x5/x8

x6

x7x9

−1

+1

Fig. 5. The edge x2x3 is removed and x3x4 is added (left). The edge x4x5 is removed and
x5x6 is added (right).

v/x3

x1

x2 x4

x5/x8

x6

x7x9

−1 +1

v/x3

x1

x2 x4

x5/x8

x6

x7x9

Fig. 6. The edge x6x7 is removed and x7x8 is added (left). The edge x8x9 is removed and
x9x0 is added (right).

In general, however, it might happen that circuits contain both cut and internal
edges, in which case we cannot use the circuit processing procedure explained above,
as the processing of a circuit might result in a realization for which the number of
edges between the classes V1 and V2 lies outside the set {γ − 1, γ, γ + 1}. The latter
condition is necessary for the intermediate states in the circuit processing procedure
to be elements of G′(γ,d), by definition of that set. In order to overcome the issue
described above, we will use the ideas in [5], and process a circuit at multiple places
alternately in case there is only one circuit in the canonical decomposition of a pairing,
or, process multiple circuits alternately (without completing the processing of a circuit
in one go) in case the decomposition yields multiple circuits. At the core of this
approach lies (a variation of) the mountain climbing problem [21,31]. We begin with
introducing this problem, and afterwards continue with the description of the circuit
processing procedure, based on the solution to the mountain climbing problem.

Intermezzo: mountain climbing problem. We first introduce some notation and
terminology. For non-negative integers a, b with a+1 < b we define an {a, b}-mountain
as a function P : {a, a+1, . . . , b} → Z≥0 with the properties that (i) P (a) = P (b) = 0;
(ii) P (i) > 0 for all i ∈ {a + 1, . . . , b − 1}; and (iii) |P (i + 1) − P (i)| = 1 for all
i ∈ {a, . . . , b − 1}. A function P : {a, a + 1, . . . , b} → Z≤0 is called an {a, b}-valley
if the function −P is an {a, b}-mountain. We subdivide a mountain into a left side
{a, . . . , t} and right side {t, . . . , b} where t is the smallest integer maximizing the
function P . For a valley function P , the left and right side are determined by the
smallest integer t minimizing the function P .

Definition 3.4. A traversal of the {a, b}-mountain P is a sequence (a, t) =
(i1, j1), . . . , (ik, jk) = (t, b) with the properties

(a) |ir − ir+1| = |jr − jr+1| = 1 ,
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(b) P (ir) + P (jr) = P (t) ,

(c) a ≤ ir ≤ t and t ≤ jr ≤ b ,

for all 1 ≤ r ≤ k−1. We always assume that a traversal is minimal, in the sense that
there is no subsequence of (a, t) = (i1, j1), . . . , (ik, jk) = (t, b) which is also a traversal.

Roughly speaking, we place one person at the far left end of the mountain, and
one at the first top. These persons now simultaneously traverse the mountain in such
a way that the sum of their heights is always equal, and they always stay on their
respective sides of the mountain that they started. The goal of the person on the left
it to ascend to the top, whereas the goal of the player at the top is to descend to the
far right of the mountain.

Lemma 3.5 ( [5]). For any mountain or valley function P on {a, . . . , b} with first
top t, there exists a traversal of P of length at most O((t − a)(b − t)), that can be
found in time O((t− a)(b− t)).

Fig. 7. Example of a mountain function P on the integers in {0, . . . , 14} with the first top at
t = 6. The left side of the mountain is given by {0, . . . , 6} and the right side by {6, . . . , 14}. A
traversal of P is given by the sequence (0, 6), (1, 7), (0, 8), (1, 9), (2, 10), (3, 11), (4, 12), (5, 13), (6, 14).

We finish this part with some additional notation that will be used later on.
Let Pj : {aj , . . . , bj} → Z for j = 1, . . . , l be a collection of mountain and valley
functions such that a1 = 0, bj = aj+1 for j = 1, . . . , p − 1, and every Pj is either
a mountain or a valley. We define the landscape Q of the functions P1, . . . , Pl as
the function Q : {0, 1, . . . , bl} → Z given by Q(i) = Pj(i) where j = j(i) is such
that i ∈ {aj , . . . , bj}. Note that Q(0) = Q(bl) = 0, and |Q(i + 1) − Q(i)| = 1 for all
i ∈ {0, . . . , bj−1}. Moreover, for any function R : {0, . . . , r} → Z satisfying the latter
two conditions, there is a unique collection of mountain and valley functions so that
R is the landscape of those functions. We call functions satisfying these conditions
landscape functions.

General case. We first partition every circuit into a collection of so-called sections,
which in turn will be grouped into so-called segments. Let C1, . . . , Cs be the canonical
circuit decomposition of the symmetric difference G△G′ for some pairing ψ, and
assume w.l.o.g. that Ci ≺C Cj whenever i < j. We write Ci = xi0x

i
1 . . . x

i
qix

i
0 where

xi0x
i
1 is the lexicographically smallest blue edge adjacent to the starting point xi0 of

the circuit Ci, and where qi is such that Ci has qi + 1 edges (and where x0 = xqi+1).
For any i, we define the function

li (r) =

 −1 if {xir−2, x
i
r−1} is cut edge and {xir−1, x

i
r} is internal edge,

1 if {xir−2, x
i
r−1} is internal edge and {xir−1x

i
r} is cut edge,

0 otherwise,

for r = 2, 4, . . . , qi + 1. The function li indicate what happens to the number of cut
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edges of a realization when we perform a hinge flip on a pair of consecutive edges
{xir−2, x

i
r−1} and {xir−1, x

i
r} on the circuit Ci.

Decomposition into segments. We subdivide every circuit Ci into a sequence of (not
necessarily closed) walks of even length, called sections. Let Zi = {r : li(r) ̸= 0} =
{z1, . . . , zui

} ⊆ {2, 4, . . . , qi + 1} be the set of indices that represent a change in cut
edges along the circuit, where we assume that z1 ≤ z2 ≤ · · · ≤ zui

. We define
C1
i = xi0x

i
1 . . . x

i
z1 and Cji = xizj−1

. . . xizj for j = 2, . . . , ui − 1. If li(qi + 1) ̸= 0
this procedure partitions the circuit Ci completely, with Cui

i being the last section.
Otherwise, we define Cu1+1

i = xizui
. . . xi0 as the final section, which is the remainder

of the circuit Ci. We define Ui as the total number of obtained sections, which is
either ui or ui + 1. Note that when Zi = ∅, the whole circuit will form one section
Ci = C1

i . Also note that a section always starts with a blue edge. We extend the
function li to sections in the following way:

li

(
Cji

)
=

∑
r=zj−1+2,...,zj

li(r) =

 −1 if li(zj) = −1,
1 if li(zj) = 1,
0 otherwise,

for j = 1, . . . , Ui. Note that l(Cji ) ∈ {−1, 1} for j = 1, . . . , ui, and zero for j = ui + 1
if this term is present. An example is given in Figure 8.

x0

x1

x2 x3 x4 x5 x6 x7 x8

x9

x10x11x12x13x14x15

c

c c c

c

c

Fig. 8. The circuit C1 = x0x1 . . . x15x0 with q1 = 15. The blue edges are represented by the
solid edges, and the red edges by the dashed edges. A label c on an edge indicates that it is a cut
edge (all others are internal edges). We have C1

1 = x0x1x2 with l1(C1
1 ) = −1; C2

1 = x2x3x4x5x6

with l1(C2
1 ) = 1; C3

1 = x6x7x8x9x10 with l1(C3
1 ) = −1; C4

1 = x10x11x12x13x14 with l1(C4
1 ) = −1;

and C5
1 = x14x15x0 with l1(C5

1 ) = 0 (note that U1 = 5 in this example).

We continue by grouping the union of all sections into segments in a similar flavor.
For sake of readability, we rename the sections

C1
1 , . . . , C

U1
1 , C1

2 , . . . , C
U2
2 , . . . , C1

s , . . . , C
Us
s

as D1, . . . , DU in the obvious way, where U =
∑s
i=1 Ui, and we define l(Dk) = li(C

j
i )

if Cji was renamed Dk. We define W = {k : l(Dk) ̸= 0} = {w1, . . . , wB} as
the set of sections representing a change in cut edges along a circuit, where we
assume that w1 ≤ · · · ≤ wB . We define the segment S1 = (D1, . . . , Dw1

), and
Si = (Dwi−1+1, . . . , Dwi

) for i = 2, . . . , wB − 1. If l(DU ) ̸= 0, i.e., when wB = U , this
procedure completely groups the collection of sections into segments. Otherwise, we
redefine the last segment as SB = (DwB−1+1, . . . , DU ). We can extend the function l
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to segments in the following way:

l (Si) =

wi∑
j=wi−1+1

l(Dj) =

{
−1 if l(Dwi

) = −1,
1 if l(Dwi

) = 1,

for i = 1, . . . , B − 1, and l (SB) =
∑U
j=wB−1+1 l(Dj). Note that

(3.2) l(Si) ∈ {−1, 1} for i = 1, . . . , B,

unless in the special case that there is only one segment S1 covering all circuits, then
l(S1) = 0. This happens, e.g., in the situation of the warm-up example.

An example of a decomposition into segments is given in Figures 11 and 12 later
on. Roughly speaking, a segment is a maximal collection of edges that could be
processed, using hinge flips operations as in the warm-up example, until the number
of cut-edges changes. In particular, the first segment represents precisely the point
up to where we could carry out the same processing steps as in the warm-up example
until the number of cut edges will have changed for the first time. Note that a segment
might contain sections from multiple circuits, in particular, it might consist of a final
section of a circuit J1, then some full circuits J2, . . . , Jh (which all form a section on
their own) and then the first section of some circuit Jh+1. The function l is then zero
on the last section of J1 and all circuits (sections) J2, . . . , Jh, and non-zero on the
section of Jh+1.

Unwinding/rewinding of a segment. The unwinding of a section D = xf . . . xg con-
sists of performing a number of hinge flip operations, that represent transitions in
the Markov chain M′(γ,d). That is we perform a sequence of hinge flip operations
replacing the (blue) edges {xr−2, xr−1} by (red) edges {xr−1, xr} for r = f +2, . . . , g,
in increasing order of r. Sometimes, we need to temporarily undo the unwinding of
a section, in which case we perform a sequence of hinge flip operations replacing the
(red) edges {xr−1, xr} by (blue) edges {xr−2, xr−1} for r = f +2, . . . , g, in decreasing
order of r this time. That is, we reverse the operations done during the unwinding.
This is called rewinding a section. We say that a circuit is (currently) processed if
all its sections have been unwound, and it is (currently) unprocessed if at least one
section has not been unwound.

The unwinding of a segment Si = (Dai , . . . , Dai+1) consists of unwinding the
sections Dai , . . . , Dai+1 in increasing order. The rewinding of Si consists of rewinding
the section Dai , . . . , Dai+1 in decreasing order.

Landscape processing. Remember that B is the number of segments obtained from the
decomposition of circuits into segments. We define the function P : {0, 1, . . . , B} → Z

by P (0) = 0 and P (i) =
∑i
j=1 l(Sj) for i = 1, . . . , B.

Lemma 3.6. The function P is a landscape function.

Proof. We have to check that P (0) = P (B) = 0 and that |P (i+1)−P (i)| = 1 for
all i = 0, . . . , B − 1, see the description of the mountain climbing problem. We have
P (0) by definition. Moreover, since both realizations G and G′ contain γ cut edges,

it holds that P (B) =
∑B
i=1 l(Si) = 0. Finally, using (3.2) and the definition of P , it

follows that

|P (i+ 1)− P (i)| =

∣∣∣∣∣
i+1∑
j=1

l(Sj)−
i∑

j=1

l(Sj)

∣∣∣∣∣ = |l(Si)| = 1 ,

for all i = 1, . . . , B − 1.
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x0 x1 x2 x3 x4 x5 x6

x0 x1 x2 x3 x4 x5 x6

unwinding rewinding

Fig. 9. A section D = x0x1 . . . x6. The blue edges are represented by the solid edges. The un-
winding consists of performing first a hinge flip with {x0, x1} to {x1, x2}; then {x2, x3} to {x3, x4};
and finally {x4, x5} to {x5, x6}. The rewinding consist of first a hinge flip with {x5, x6} to {x4, x5};
then {x3, x4} to {x2, x3}; and finally {x1, x2} to {x0, x1}

Based on the segments S1, . . . , SB , we define the canonical path from G to G′ in
the state space graph of the chain G′(γ,d) that replaces all the blue edges in G△G′

with the red edges in G△G′. By Lemma 3.6 we know P is a landscape function
and therefore there is a unique decomposition into mountain and valley functions
P1, . . . , Pp so that P is the landscape function for this collection, where every function
is of the form Pj : {aj , . . . , bj} → Z with a1 = 0, bj = aj+1 for j = 1, . . . , p − 1,
and bp = B.5 The processing of a mountain/valley Pj means that all segments
Saj+1, . . . , Sbj will be unwound (it might be that during this procedure segments are
temporarily rewound). This processing will rely on a traversal of the mountain, see
Definition 3.4. We say that the segments Saj+1, . . . , Stj are on the left side of the
mountain, and the segments Stj+1, . . . , Sbj on the right side of the mountain, where
tj is the first top of the mountain. Let P = Pj for some j and assume that P is a
mountain function. For sake of notation, we write a = aj and b = bj , and t = tj .

Now, fix some traversal (a, t) = (r1, s1), . . . , (rk, sk) = (t, b) of P . For τ =
1, . . . , k − 1 in increasing order, do the following:

1. if rτ+1 > rτ and sτ+1 > sτ : first unwind segment Srτ+1
, then unwind Ssτ+1

;

2. if rτ+1 > rτ and sτ+1 < sτ : first unwind segment Srτ+1 , then rewind Ssτ ;

3. if rτ+1 < rτ and sτ+1 > sτ : first rewind segment Srτ , then unwind Ssτ+1
;

4. if rτ+1 < rτ and sτ+1 < sτ : first rewind segment Srτ , then rewind Ssτ .

This describes the processing of a mountain based on a traversal. Note that after the
processing of a mountain, indeed all its segments have been unwound (see also the
example worked out in the Figures 11, 12, 13 and 14). If P is a valley function, we can
use essentially the same procedure performed on −P . The processing of a landscape
is done by processing the mountains/valleys P1, . . . , Pp in increasing order.

This procedure generates a sequence G = Z1, Z2, . . . , Zl = G′ of realizations
transforming G into G′ where any two consecutive realizations differ by a hinge flip
operation. The following lemma shows that this sequence indeed defines a (canonical)
path from G to G′ in the state space graph of M(γ,d), for a given pairing ψ. This
lemma is essentially the motivation for the definition of G′(γ,d).

Lemma 3.7. Let Z = Zi be a realization on the constructed path from G to G′

for pairing ψ, with degree sequence d′ and γ′ cut edges. Then (γ′,d′) satisfies the

5 The function P1 can be found by determining the first j > 0 so that P (j) = 0. The sign of
P (1) determines if it is a mountain or a valley. The remaining mountains and valleys can be found
similarly.
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properties (i), (ii) and (iii) defining G′(γ,d) (see Section 2.2).
Moreover, there exists a polynomial r(·) such that the length of any constructed

(canonical) path carrying flow is at most r(n).

Proof. Since hinge flip operations never change the number of edges in a graph,
property (i) is clearly satisfied. Since the operations (1)–(4) given above unwind and
rewind at most two segments, and by construction of the trajectories describing the
traversal, the property (ii) is also satisfied. Finally, the cases (1)–(4), in combination
with the second property of a traversal as in Definition 3.4, guarantee that property
(iii) is satisfied. To see that all canonical paths have polynomial length, note that the
traversal has polynomial length, and also every individual segment has polynomial
length.

3.1.2. Encoding. We continue with defining the notion of an encoding that
will be used in the next section to bound the congestion of an edge in the state space
graph of M(γ,d). Let τ = (Z,Z ′) be a given transition of the Markov chain. Suppose
that a canonical path from G to G′ for some pairing ψ ∈ Ψ(G,G′), with canonical
circuit decomposition {C1, . . . , Cs}, uses the transition τ . We define Lτ (G,G

′) =
(G△G′)△Z. An example is given in Figures 11, 12, 13 and 14.

Lemma 3.8. Given τ = (Z,Z ′), L, and ψ, if there is some pair (G,G′) so that
L = Lτ (G,G

′), then there are at most 1
8n

4 such pairs.

Proof. For any pair (G,G′), let P be the landscape function of this canonical
path between G and G′ using the transition τ , and P1, . . . , Pp its decomposition
into mountain and valley functions. Let Tτ,ψ(G,G

′) ∈ {C1, . . . , Cs} be the circuit
containing the first node of the first segment of the right part of the mountain/valley
Pj containing the transition τ . Without loss of generality, we assume that Pj is a
mountain. Moreover, let Γ be the circuit containing the transition τ . If τ is used
in the processing of a segment on the left side of the mountain Pj containing τ , let
σψ(G,G

′) be the circuit containing the last node of the segment with highest index
on the right side of the mountain that is currently (at the time the transition τ is
performed) unwound. If τ lies on the right side of the mountain, we let σψ(G,G

′) be
the circuit containing the last node of the segment with highest index on the left side
of the mountain that is currently unwound.

TψΓ σψ
processed unprocessed processed unprocessed

Fig. 10. The dashed vertical lines sketch the ranges of the circuits Tψ, σψ and Γ. For every
other circuit, contained in one of the four regions represented below the landscape, we know whether
it has currently been processed or not.

We claim that, given Tψ, σψ ∈ {C1, . . . , Cs}, it can be argued that there are at
most 8 pairs (G,G′) so that Tψ = Tψ(G,G

′), σψ = σψ(G,G
′). This can be seen as

follows. Note that we can infer for all other circuits in {C1, . . . , Cs} \ {Tψ, σψ,Γ}
which edges belong to G and which to G′ using the (global) circuit ordering. To see
this, assume that Γ ⪯C Tψ ⪯C σψ (the only other case σψ ⪯C Tψ ⪯C Γ is similar).
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Because the landscapes of the canonical paths always respect the circuit ordering, we
know that all circuits in the canonical decomposition of ψ appearing before Γ have
been unwound at this point. All circuits lying strictly between Γ and Tψ are not
unwound. The circuits strictly between Tψ and σψ again have been unwound, and
finally, all circuits appearing after σψ have not been unwound (see Figure 10). By
comparison with Z, it is uniquely determined which edges on these circuits belong
to G and which to G′. For the remaining three circuits Tψ, σψ and Γ there are for
every circuit two possible configurations of the edges of G and G′, since every circuit
alternates between edges of G and G′.6 Hence, there are at most 23 = 8 possible pairs
(G,G′) with the desired properties given Tψ and σψ.

Finally, note that for any pairing ψ, there are at most 1
4

(
n
2

)
circuits in the canonical

circuit decomposition {C1, . . . , Cs} of the pairing ψ, as every circuit has length at least
four. Hence, for both Tψ and σψ there are at most 1

4

(
n
2

)
possible choices. Since Γ is

uniquely determined by the transition τ , this implies that there are at most

8 · 1
4

(
n

2

)
· 1
4

(
n

2

)
≤ n4

8

possible pairs (G,G′) with L = Lτ (G,G
′). It should be noted here that a canonical

path uses each transition at most once; repeated transitions would contradict the
minimality of a traversal (Definition 3.4).

a0

a1 a2

a3 x0

x1

x2 x3 x4 x5 x6 x7 x8

x9

x10x11x12x13x14x15 b0

b1 b2

b3

c

c c c

c

c

c

c

Fig. 11. Symmetric difference H = G△G′ where the solid edges represent the (blue) edges G and
the dashed edges the (red) edges of G′. From left to right the circuit are numbered C1 = a0a1a2a3a0,
C2 = x0 · · ·x15x0 and C3 = b0b1b2b3b0, and assume that this is also the order in which they are
processed. Cut edges are indicated with the label c.

S
1 S 2

S
3

S
4 S 5

S 6

Fig. 12. The landscape, consisting of two valleys, corresponding to the symmetric difference
in Figure 11. The segments are given by S1 = (a0a1a2a3a0, x0x1x2), S2 = (x2x3x4x5x6), S3 =
(x6x7x8x9x10), S4 = (x10x11x12x13x14), S5 = (x14x15x0, b0b1b2), and S6 = (b2b3b0).

6 Note that we cannot use the transition τ to infer which edges belong to G and G′ on the circuit
Γ, as we do not know (i.e., we do not encode) whether we are unwinding or rewinding the segment
containing τ .
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a0

a1 a2

a3 x0

x1

x2 x3 x4 x5 x6 x7 x8

x9

x10x11x12x13x14x15 b0

b1 b2

b3

a0

a1 a2

a3 x0

x1

x2 x3 x4 x5 x6 x7 x8

x9

x10x11x12x13x14x15 b0

b1 b2

b3

Fig. 13. The transition τ = (Z,Z′) that is the hinge flip operation that removes the edge
{x10, x11} and adds the edge {x11, x12} as part of the unwinding of S4. Note that the segments S1

and as S2, forming the first valley, have been processed already. Also, the first segment S3 of the left
part of the second valley, as well as the segment S5 being the first segment of the right part of the
second valley, have been processed already. The segment S6 has not been processed yet. The edges
in (E(G) ∪ E(G′)) \ E(H) are left out.

a0

a1 a2

a3 x0

x1

x2 x3 x4 x5 x6 x7 x8

x9

x10x11x12x13x14x15 b0

b1 b2

b3

Fig. 14. The encoding L = Lt(G,G′) = (G△G′)△Z for the symmetric difference in Figure 11
and transition as in Figure 13, where again the edges in (E(G) ∪ E(G′)) \ E(H) are left out.

3.1.3. Bounding the Congestion. For a tuple (G,G′, ψ), let pψ(G,G
′) denote

the canonical path from G to G′ for pairing ψ. Let

Lτ = ∪(G,G′,ψ)∈Fτ
Lτ (G,G

′)

be the union of all distinct encodings Lτ , where Fτ = {(G,G′, ψ) : τ ∈ pψ(G,G
′)}

is the set of all tuples (G,G′, ψ) such that the canonical path from G to G′ under
pairing ψ uses the transition τ . (The reason why we consider distinct encodings will
become clear in the final calculation for upper bounding f ′.) A crucial observation is
summarized in the following lemma.

Lemma 3.9. If L = Lτ (G,G
′) = (G△G′)△Z for transition τ = (Z,Z ′) used by a

canonical path between G and G′, then L ∈ G′(γ,d). This implies that

(3.3) |Lτ | ≤ |G′(γ,d)| .
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Proof. We check that the properties (i), (ii) and (iii) defining the set G′(γ,d) (see
Section 2.2) are satisfied by L. Note that L△Z = G△G′. As every individual hinge
flip operations adds and removes an edge from the symmetric difference, it follows
that L and Z have the same number of edges. This proves property (i). Also, if Z
has a perturbation of αv ∈ {−2,−1, 0, 1, 2} (see Proposition 2.2) at node v, then L
has a perturbation of −αv at node v, which shows that property (ii) is satisfied for L.
Finally, with β ∈ {−1, 0, 1}, if Z contains γ − β cut edges, then L contains γ + β cut
edges (using implicitly that G and G′ contain the same number of cut edges). This
implies that property (iii) is satisfied.

Moreover, with H = G△G′ and L = Lτ (G,G
′), the pairing ψ has the property

that it pairs up the edges of E(H) E(L) and E(H) ∩ E(L) in such a way that for
every node v each edge in E(H) E(L) that is incident to v is paired up with an edge
in E(H)∩E(L) that is incident to v, except for at most four pairs. These pairs occur
at nodes whose degree is currently one higher or lower than it is supposed to be (in G
and G′). Roughly speaking, during the processing of the symmetric difference, there
are at most two circuits being processed “at the same time”. For every circuit there
is at most one node whose degree in the encoding is one lower than in G (and G′),
and at most one node whose degree is one higher than its degree in G (see Figures
4-6 for an example). In Figure 14 these are the nodes x10, x14, b0 and b2.

Let Ψ′(L) be the set of all pairings with the property described in the previous
paragraph. Remember that we do not need to know G and G′ in order to determine
the set H = L△Z. Also, note that not every pairing in Ψ′(L) has to correspond
to a tuple (G,G′, ψ) for which τ ∈ pψ(G,G

′). Using a standard counting argument
(see, e.g., [4]), we can upper bound |Ψ′(L)| in terms of |Ψ(G,G′)|. There are several
cases but all of them are equally simple. Indicatively, we show the calculation for one
case where there are indeed four pairs of edges that do not consist of one edge from
E(H) E(L) and one from E(H)∩E(L): one pair incident to node u, one incident to
w, and two incident to x. The other cases are similar and the same upper bound works
for all of them. Recall that θv denotes the number of red (or blue) edges adjacent to
a node v, and that |Ψ(G,G′)| = Πv∈V θv!. We have

|Ψ′(L)| = (θu + 1)!

2
· (θw + 1)!

2
· (θx + 2)!

2 · 3
·
∏

v∈V {u,w}

θv!

=
(θu + 1)(θw + 1)(θx + 1)(θx + 2)

24
· |Ψ(G,G′)|

≤ n4 · |Ψ(G,G′)| .(3.4)

Putting everything together, we have

|G′(γ,d)|2f ′(τ) =
∑

(G,G′)

∑
ψ∈Ψ(G,G′)

1(τ ∈ pψ(G,G
′)) · |Ψ(G,G′)|−1

≤ 1

8
n4
∑
L∈Lτ

∑
ψ′∈Ψ′(L)

|Ψ(G,G′)|−1 (by Lemma 3.8)

≤ 1

8
n4 · n4 ·

∑
L∈Lτ

1 (by (3.4))

≤ 1

8
n8 · |G′(γ,d)| . (by (3.3))(3.5)
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The usage of Lemma 3.8 for the first inequality works as follows. Every tuple
(G,G′, ψ) ∈ Fτ with encoding Lτ (G,G

′) generates a unique tuple in {Lτ (G,G′)} ×
Ψ′(Lτ (G,G

′)). But since, by Lemma 3.8, there are at most 1
8n

4 pairs (G,G′) with
L = Lτ (G,G

′) for given L, τ and ψ, we have that 1
8n

4
∑
L∈Lτ

|{L} × Ψ′(L)| =
1
8n

4
∑
L∈Lτ

∑
ψ′∈Ψ′(L) 1 is an upper bound on the number of canonical paths that

contain τ .
By rearranging (3.5) we get the upper bound for f ′ required in Lemma 3.3. We

already observed that the length of any canonical path is polynomially bounded as
well. This then completes the proof of Theorem 3.2.

3.2. Strong Stability of 2-Class JDM Instances. In Section 3.1 we have
shown that the hinge flip Markov chain for PAM instances with two classes is rapidly
mixing on G′(γ,d) in case (γ,d) comes from a family of strongly stable tuples. In
this section we show that JDM instances with two degree classes are strongly stable.
When dealing with a family of instances, even when this is not explicitly mentioned,
we only consider the tuples (c,d) for which there is at least one realization.

Theorem 3.10. Let D be the family of instances of the joint degree matrix model,
i.e., where for every tuple (V1, V2, γ,d) it holds that 1 ≤ β1, β2 ≤ |V | − 1, and 1 ≤
γ ≤ |V1||V2| − 1, where β1 and β2 are the common degrees in the classes V1 and V2,
respectively. The family D is strongly stable for k = 11, and, hence, the hinge flip
chain is rapidly mixing for all tuples in D.

Proof. We first show that this family is strongly stable for k = 7. For convenience,
we will work with the notation G′(c,d) instead of G′(γ,d). Remember that

cii =
1

2

(∑
j∈Vi

dj

)
− γ

 ,
for i = 1, 2, is the number of internal edges that Vi has in any realization in G(γ,d),
and that γ = c12 = c21. For sake of readability, we define the notion of a cancellation
hinge flip. For either i = 1 or i = 2, suppose nodes v, w ∈ Vi, are such that v has a
degree deficit of at least one, and w a degree surplus of at least one. Then w has a
neighbor z ∈ V that is not a neighbor of v (using that v and w have the same degree
βi). The hinge flip operation that removes the edge {z, w} and adds the edge {z, v}
is called a cancellation flip on v and w. Note that the number of internal edges in V1
and V2 as well as the number of cut edges does not change with such an operation.7

Moreover, we say that an edge {a, b} is a non-edge of a realization G if {a, b} /∈ E(G).
LetG ∈ G′(c,d) for some tuple (c′,d′) as in the definition of G′(c,d) at the start of

Section 3.1. We first show that with at most four hinge flip operations, we can obtain
a perturbed auxiliary state G∗ ∈ G′(c,d) for which its tuple (c∗,d∗) is edge-balanced.
That is, it satisfies c∗ = c. Remember that the value c′12 uniquely determines the
matrix c′, and, by assumption of G′(c,d), we have c′12 ∈ {c12 − 1, c12, c12 + 1}. We
can therefore distinguish the following cases.

• Case 1: c′12 = c12 + 1. Then, by Proposition 2.2, either c′11 = c11 − 1 and
c′22 = c22, or, c

′
22 = c22 − 1 and c′11 = c11. Assume without loss of generality

7 That is, either z lies in the other class, in which case the cancellation flip removes and adds a
cut edge, or, z lies in the same class as v and w in which case an internal edge in Vi is removed and
added.
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that we are in the first case. Then it holds that

(3.6)
∑
j∈V1

d′j =

(∑
j∈V1

dj

)
− 1 and

∑
j∈V2

d′j =

(∑
j∈V2

dj

)
+ 1 .

Moreover, there must be at least one node v2 ∈ V2 with a degree surplus
(of either one or two), and there is at least one non-edge {a, b} with both
endpoints in V1. If v2 is adjacent to either a or b, we can perform a hinge flip
to make the realization G edge-balanced, so assume this is not the case. Also,
if the total deficit of a and b is −2, there must be a node in V1 with degree
surplus, otherwise (3.6) is violated. Then we can perform a cancellation flip
in V1 to remove the deficit at either a or b. Hence, we may assume without
loss of generality that a does not have a degree deficit at the cost of one hinge
flip.

– Case A: v2 has a neighbor v1 ∈ V1. If v1 has a degree surplus we
can perform a cancellation flip in V1 to remove it, which must exist by
(3.6). So assume v1 has no degree surplus. As node a has no deficit,
and is not connected to v2, whereas v1 is, there must be some neighbor
p of a which is not a neighbor of v1. This holds since v1 and a have the
same degree β1 in the sequence d. Then the path v2 − v1 − p − a − b
alternates between edges and non-edges of G, and with two hinge flips we
can obtain an edge-balanced realization in G′(γ,d). This case therefore
requires at most three hinge flips in total.

b a
p

v1

v2

V1 V2

Fig. 15. Sketch of first case with subcase A.

– Case B: v2 has no neighbors in V1. We know that there is at least
one cut edge {q, r}, with q ∈ V2 and r ∈ V1, in the realization G, since
c′12 = c12+1. If q has a degree surplus, we are in the situation of Case A.
Otherwise v2 has a neighbor u which is not a neighbor of q, since q and
v2 have the same degree β2 in the sequence d. We can then perform the
hinge flip that removes {v2, u} and adds {u, q}. If q now has a degree
surplus, we are in Case A. Otherwise, in case this hinge flip canceled out
a degree deficit at q, there must be at least one other node in V2 with
a degree surplus, because of (3.6). We can then perform the same step
again, which will now result in a degree surplus at q. This is true since
the node q cannot have a deficit of −2, since (3.6) would then imply
that the the total degree surplus of nodes in V2 is at least three, which
violates the second property defining G′(c,d). That is, we can always
reduce to the situation in Case A with at most two hinge flips.
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Summarizing, we can always find an edge-balanced realization G∗ using at
most six hinge flip operations in case c′12 = c12 + 1.

• Case 2: c′12 = c12 − 1. Using complementation, it can be seen that this case
is similar to Case 1. That is, we consider the tuple (c̄, d̄) in which all nodes
in V1 have degree |V |−β1, all nodes in V2 have degree |V |−β2, and where all
feasible realizations have c̄12 = |V1||V2|−c12 cut edges. The case c12 = c12−1
then corresponds to the case c̄′12 = c̄12 + 1.

• Case 3: c′12 = c12. If also c11 = c′11 we are done. Otherwise, suppose that
c′11 = c11 + 1. Then it must be that c′22 = c22 − 1, as c′12 = c12, and it holds
that

(3.7)
∑
j∈V1

d′j =

(∑
j∈V1

dj

)
+ 2 and

∑
j∈V2

d′j =

(∑
j∈V2

dj

)
− 2 .

Then there is at least one edge {a, b} in the realization with a, b ∈ V1. More-
over, we may assume that a has a degree surplus. If not, then there is at
least one other node u with a degree surplus because of (3.7). Performing a
cancellation flip then gives the node a a degree surplus (it could not be that
a had a degree deficit, as this would imply, in combination with (3.7), that
the total degree surplus of nodes in V1 is at least three).

aw

r
p

q

V1 V2

Fig. 16. Sketch of last situation in Case 3.

Now, if there is a non-edge of the form {b, v2} for some v2 ∈ V2, we can
perform a hinge flip operation removing {a, b} and adding {b, v2} in order to
end up in Case 1. Otherwise, assume that b is adjacent to all v2 ∈ V2. As b is
also adjacent to a, and a has a degree surplus of at least one,8 it follows that
β1 ≥ |V2|. Now, by the assumption that c12 ≤ |V1||V2| − 1, there is at least
one non-edge {p, q} with p ∈ V1 and q ∈ V2. As p is not adjacent to q, but
has degree at least β1 ≥ |V2|, it must be that p is adjacent to some r ∈ V1. If
r has a degree surplus, then we can perform a hinge flip that removes {p, r}
and adds {p, q} in order to end up in the situation of Case 1. Otherwise, node
a, which has a degree surplus, has some neighbor w which is not a neighbor
of r. This implies the path a − w − r − p − q alternates between edges and
non-edges of G. Performing two hinge flips then brings us in the situation of
Case 1. Overall, we can resolve this case using at most three hinge flips, or
provide a reduction to Case 1 with at most three hinge flips.

The arguments above imply that with at most nine hinge flips we can obtain some
G∗ ∈ G′(c,d) that is edge-balanced. (In the worst-case we need three hinge flips to

8 That is, b can have a degree surplus of at most one. A degree surplus of two at b would only
give a bound of β1 ≥ |V2| − 1.
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reduce Case 3 to Case 1, after which we need six hinge flips to resolve the latter.)
This implies that

(3.8)
∑
j∈V1

d∗j =
∑
j∈V1

dj and
∑
j∈V2

d∗j =
∑
j∈V2

dj .

Now, if v ∈ V1 has a degree surplus, there must be some w ∈ V1 that has a degree
deficit, because of (3.8). We can then perform a cancellation flip to decrease the sum
of the total degree deficit and degree surplus. A similar statement is true if v ∈ V2
has a degree surplus. By performing this step at most twice, we obtain a realization
H ∈ G(c,d). That is, with at most eleven hinge flip operations in total we can
transform G into a realization in G(c,d). This shows that D is strongly stable for
k = 11.

3.3. Rapid Mixing of the Switch Chain. In this section we will use an
embedding argument similar to that in [4] to show that the restricted switch chain is
rapidly mixing in the case that all degrees in each class are the same, i.e., for instances
that are essentially JDM instances with two degree classes.

While the restricted switch chain is known to be irreducible for the instances of
the JDM model [1, 11], in general this is not true [15]. To the best of our knowledge,
there is no clear understanding for which pairs c and d it is irreducible in general.
Nevertheless, we present the following meta-result for the rapid mixing of the switch
chain, which in particular applies when the degrees are the same within each compo-
nent (Theorem 3.1).

Theorem 3.11. Let D be a strongly stable family of tuples (γ,d) with respect to
some constant k, and suppose there exists a function p0 : N → N with the property
that, for any fixed x ∈ N : if (γ,d) ∈ D, and G,G′ ∈ G(γ,d) so that |E(G)△E(G′)| ≤
x, the switch-distance satisfies distG(γ,d)(G,G

′) ≤ p0(x). Then the switch chain is
rapidly mixing for all tuples in the family D with respect to the uniform stationary
distribution over G(γ,d).

Proof. First note that by definition of the function p0, the switch chain is irre-
ducible. It is also not hard to see that the switch chain is aperiodic and symmetric as
well. This implies that it has a unique stationary distribution which is the uniform
distribution over G(γ,d). In the remainder we will use Gh to denote the state space
graph of the hinge flip chain with node set G′(γ,d), and Gsw to denote that of the
switch chain with node set G(γ,d).

By assumption of strong stability, we know that the hinge flip chain M(γ,d) is
rapidly mixing. In particular, from the proof of Theorem 3.2, we know there exists a
flow f ′ that routes 1/|G′(γ,d)|2 units of flow between any pair of states in Gh, with
the property that f ′(e) ≤ p(n)/|G′(γ,d)|, and ℓ(f ′) ≤ q(n), for some polynomials
p(·), q(·) whose degrees may only depend on k = k(γ,d).

For the switch chain we are interested in efficiently routing 1/|G(γ,d)|2 units of
flow between any two states in Gsw. We therefore first modify f ′ into a flow that
routes 1/|G(γ,d)|2 units of flow between any two states in G(γ,d) in the state space
graph Gh (which will then be transformed into the desired flow in Gsw).

We first simply remove all flow from f ′ in Gh routed between states (G,G′) where
at least one of G or G′ is an element of G′(γ,d). We call the resulting intermediate
flow g′. Note that the removal of this flow from f ′ can only result in a lower congestion
for g′, so in particular we have g′(e) ≤ f ′(e) for every edge in E(Gh). Next, because
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of strong stability, it follows directly that

|G′(γ,d)|
|G(γ,d)|

≤ t1(n) ,

for some polynomial t1(n) (the leading exponent of which depends on k). It then
follows that if we route 1/|G(γ,d)|2 units of flow over every path in the flow g′,
instead of 1/|G′(γ,d)|2, the resulting flow g satisfies

g(e) ≤ t1(n)
1

|G(γ,d)|
.

The problem is that the flow g might still route flow through states in G′(γ,d)\G(γ,d),
which are not a part of Gsw.

In order to address this problem, the idea is to “merge” every auxiliary state in
G′(γ,d) \ G(γ,d) with some node in G(γ,d) that is only a small number of hinge flips
away from it (which is possible because of strong stability). This results in a graph
with node set G(γ,d) but with edges possibly between states that are not connected
by a switch operation (and, hence, not present in Gsw). In order to overcome this
issue, we will show that the flow on such an ‘illegal’ edge can be rerouted over a short
detour consisting only of edges present in Gsw. For this we will use the function p0
(whose definition precisely guarantees that this is possible).

We let ϕ define a function that maps every auxiliary state G′ ∈ G′(γ,d) \ G(γ,d)
to some G = ϕ(G′) ∈ G(γ,d) that is at most k hinge flips away from G′. For every
G ∈ G(γ,d) we then merge all nodes in ϕ−1(G) into one super node identified with
G. Self-loops in the resulting graph are removed and any parallel edges are merged
into one edge, and in particular, all flow of g from the parallel edges is routed over the
single edge. We call this graph, with node set G(γ,d), H. Because of the definition of
ϕ, the above procedure gives rise to a new flow ḡ in H that routes 1/|G(γ,d)|2 units
of flow between any two states in the resulting graph of the node set G(γ,d) with the
property that

ḡ(e) ≤ t2(n)
1

|G(γ,d)|
,

for some polynomial t2 for every edge in H. The final issue that we have to resolve is
that H contains edges between states that are not connected by a switch operation.
However, because ϕ maps every auxiliary states to a state in G(γ,d) close to it, every
illegal edge has the property that its endpoints have a symmetric difference which is
upper bounded by an expression x = x(k) linear in k. The assumed function p0 then
implies that there exists a short path in Gsw over which we can reroute the flow of this
illegal edge. Because this rerouting is done on a local level, it can be shown that the
congestion of the resulting flow f blows up by at most a polynomial factor compared
to ḡ. Note that f is the desired efficient multi-commodity flow for the switch Markov
chain.

We conclude this section with the proof of Theorem 3.1.

Proof of Theorem 3.1. Strong stability was shown in the previous section in The-
orem 3.10. Moreover, from the proof of Lemma 7 in [1] it follows that for any two
graphs H,H ′ ∈ G(γ,d), H can be transformed into H ′ using at most 3

2 |E(H)△E(H ′)|
switches of the restricted switch chain. That is, we may take p0(x) =

3
2x. Then the

statement follows from Theorem 3.11.



26 G. AMANATIDIS, P. KLEER

4. Rapid Mixing of the Hinge Flip Chain for Certain Sparse Regimes.
We next show that certain families of sparse instances are strongly stable as well.
Sparsity here refers to the fact that the maximum degree in a class is significantly
smaller than the size of the class, as well as the fact that the number of cut edges is
(much) smaller than the total number of edges in a graphical realization.

Theorem 4.1 (Sparse irregular families). Let 0 < α < 1/2 be fixed, and let Dα
be the family of tuples (V1, V2, c,d) for which

(i) |V1|, |V2| ≥ αn ,

(ii) 2 ≤ di ≤
√

αn
4 for i ∈ V1 ∪ V2, and,

(iii) 1 ≤ c12 ≤ αn
2 .

The class Dα is strongly stable for k = 11, and, hence, the hinge flip chain is rapidly
mixing for all tuples in Dα.

Proof. We proceed in a similar fashion as the proof of Corollary 3.10. We will
use the notion of an alternating path. For a given graph H = (W,E), an alternating
path (x1, . . . , xq) is an odd sequence of nodes so that {xi, xi+1} ∈ E for i even, and
{xi, xi+1} /∈ E for i odd.

Lemma 4.2 (following from [22]). Let δ = (δ1, . . . , δr) be a degree sequence with
1 ≤ δi ≤

√
r/2 for all i = 1, . . . , r. Fix x, y ∈ [r] and let H = ([r], E) be a graphical

realization of the degree sequence δ′ where δ′x = δx+1, δ′y = δy − 1 and δ′i = δi for all
i ∈ [r] \ {x, y}. Then there exists an alternating path of length at most four starting
at x and ending at y.

Now, let G ∈ G′(c,d) for some tuple (c′,d′) as in the definition of G′(c,d) at the
start of Section 2.2. We show that with at most five hinge flip operations, we can
transform G into a perturbed auxiliary state G∗ ∈ G′(c,d) for which its tuple (c∗,d∗)
is edge-balanced.

• Case 1: c′12 = c12 + 1. Then, by Proposition 2.2, either c′11 = c11 − 1 and
c′22 = c22, or, c

′
22 = c22 − 1 and c′11 = c11. Assume without loss of generality

that we are in the first case. Then it holds that

(4.1)
∑
j∈V1

d′j =

(∑
j∈V1

dj

)
− 1 and

∑
j∈V2

d′j =

(∑
j∈V2

dj

)
+ 1 .

Moreover, there must be at least one node v2 ∈ V2 with a degree surplus (of
either one or two).

– Case A: v2 has a neighbor v1 ∈ V1. By assumptions i) and ii) it
must be that there is some b ∈ V1 so that v1 is not a neighbor of b. Then
we can perform the hinge flip that removes {v2, v1} and adds {v1, b},
resulting in an edge-balanced realization.

– Case B: v2 has no neighbors in V1. Since c12 ≥ 1 by assumption
iii), there is some edge {a, b} in G with a ∈ V1 and b ∈ V2 \ {v2}.
We consider the induced subgraph H on the nodes in V2 and use δ′ to
denote its degree sequence. We next apply Lemma 4.2 with v2 = x and
b = y. To see that this is possible, note that c12 ≤ αn/2 by assumption
iii). This implies, in combination with assumption i) that at least αn/2
nodes in V1 have degree at least one in H. Thus, we may apply Lemma
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4.2 with r = |V (H)| ≥ αn/2, since di ≤
√
αn/4 by assumption ii)

(which is less or equal than
√
r/2 if r ≥ αn/2) . Hence, there exists

an alternating path of length at most four starting at v2 and ending
at b. Then by performing two hinge flips, resulting in the removal of
{v2, f}, {g, h} and addition of {f, g}, {h, b}, we are in the situation of
Case A where b now plays the role of v2.

a

f

g
hb

v2

V1 V2

Fig. 17. Sketch of subcase B in Case 1.

Overall, in this case we can reach an edge-balanced realization with at most
three hinge flips.

• Case 2: c′12 = c12 − 1. Suppose without loss of generality that c′11 = c11 + 1
and c′22 = c22, and note that there must be at least one node v1 ∈ V1 with
a degree surplus. If v1 has a neighbor in V1 we can perform a hinge flip
operation to obtain an edge-balanced realization as desired (as this neighbor
has at least one non-neighbor in V2 by assumptions i) and ii)). Therefore,
assume that all neighbors of v1 lie in V2. Pick some neighbor b ∈ V2 of v1.
Since all nodes in V1 have degree at least one, and c12 ≤ αn/2, it must be
that b is not adjacent to some node a ∈ V1 that has degree at least one in the
induced subgraph H on the nodes of V1, as db ≤

√
αn/4 and |V (H)| ≥ αn/2.

Let c be some neighbor of a in V1 that exists by assumption that a has degree
at least one in H. Also, c is not adjacent to some d ∈ V2 for similar reasons as
that b was not adjacent to a. This means that with two hinge flip operations
we can obtain an edge-balanced realization.

v1

a

b

c
d

V1 V2

Fig. 18. Sketch of Case 2.

• Case 3: c′12 = c12. If also c11 = c′11 we are done. Otherwise, suppose that
c′11 = c11 + 1. Then it must be that c′22 = c22 − 1, as c′12 = c12, and it holds
that

(4.2)
∑
j∈V1

d′j =

(∑
j∈V1

dj

)
+ 2 and

∑
j∈V2

d′j =

(∑
j∈V2

dj

)
− 2 .

There is at least one node v1 ∈ V1 with a degree surplus. If v1 has a neighbor
a ∈ V1, which in turn has a non-neighbor b ∈ V2 by assumptions i) and ii),
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then we can reduce to the situation of Case 1 by performing a hinge flip
removing {v1, a} and adding {a, b}. Therefore, assume that all neighbors of
v1 are in V2. We can then pick some neighbor b ∈ V2 and perform a similar
step as in Case 2 to find an alternating path (v1, b, a, c) with v1, a, c ∈ V1 and
b ∈ V2. Then we can perform two hinge flip operations to reduce to Case
1 again. Overall, we can reduce this case to Case 1 with at most two hinge
flips.

We have shown that with at most five hinge flips we can always obtain some G∗ ∈
G′(c,d) that is edge-balanced (in the worst case by using two hinge flips in Case 3 to
reduce to Case 1 that requires three additional hinge flips). This implies that

(4.3)
∑
j∈V1

d∗j =
∑
j∈V1

dj and
∑
j∈V2

d∗j =
∑
j∈V2

dj .

Now, if v ∈ V1 has a degree surplus, there must be some w ∈ V1 that has a degree
deficit, because of (4.3). Moreover, if all neighbors of v are in V2, we can transfer
the degree deficit to some node with degree at least one in the subgraph induced on
V1 at the cost of one hinge flip operation (similar as the analysis in Case 2). That
is, we may assume that v has a neighbor in V1. Then, using similar arguments as in
Case 1.B, it follows that there exists an alternating path from v to w in V1, which
allows us to decrease the total degree surplus/deficit using two hinge flip operations.
In total this procedure needs at most three hinge flips. This can be repeated to obtain
a feasible realization H ∈ G(γ,d) at the cost of another three hinge flips.

Overall, we obtain strong stability with k = 5 + 3 + 3 = 11.

In particular, Theorem 4.1 directly implies the following which, to the best of our
knowledge, is the first result of its kind for the PAM model.

Corollary 4.3. Let Dα be as in Theorem 4.1. Then there is an fully polynomial
almost uniform generator for tuples in the family Dα.

5. Conclusion. We have shown rapid mixing of the restricted switch chain for
sampling realizations of a given joint degree matrix instance with two degree classes.
While this is the first result of its kind, finding a polynomial time sampling algorithm
for the general case remains open, either by showing rapid mixing of the switch Markov
chain or any other method for that matter. Although our proof breaks down for more
than two classes, we believe that our high level approach can facilitate progress on the
problem. A key missing ingredient here would be a multi-dimensional substitute of
the mountain climbing problem. As a byproduct of our main result, we also obtain the
first sampling results for sparse PAM instances with two partition classes. However, it
seems that we are a long way from constructing polynomial-time sampling algorithms
for general PAM instances. For three or more classes it is not even known whether
we can efficiently construct a realization (or decide that none exists).
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