
Doctoral Thesis

Algorithmic and Mechanism Design Aspects
of Problems with Limited—or no—Payments

Georgios Amanatidis

Advisor: Asst. Prof. Evangelos Markakis

A thesis submitted in fulfillment of the requirements

for the degree of Doctor of Philosophy in the

Department of Informatics

September 12, 2017

http://www2.aueb.gr/users/amanatidis/index.html
http://pages.cs.aueb.gr/~markakis/
http://www.cs.aueb.gr/en

Algorithmic and Mechanism Design Aspects of
Problems with Limited—or no—Payments

Approved by:

Asst. Prof. Evangelos Markakis, Advisor

Department of Informatics

Athens University of Economics and Business

Asst. Prof. Dimitris Fotakis

School of Electrical and Computer Engineering

National Technical University of Athens

Assoc. Prof. Iordanis Koutsopoulos

Department of Informatics

Athens University of Economics and Business

Assoc. Prof. Aris Pagourtzis

School of Electrical and Computer Engineering

National Technical University of Athens

Asst. Prof. Orestis Telelis

Department of Digital Systems

University of Piraeus

Emer. Prof. Stathis Zachos

School of Electrical and Computer Engineering

National Technical University of Athens

Prof. Vassilis Zissimopoulos

Department of Informatics and Telecommunications

National and Kapodistrian University of Athens

Date Approved: August 28, 2017

v

“The most effective way to do it, is to do it.”

Amelia Earhart

Athens University of Economics and Business

Department of Informatics

Abstract

of the thesis

Algorithmic and Mechanism Design Aspects of

Problems with Limited—or no—Payments

by Georgios Amanatidis

The most notable distinction between algorithm design and mechanism design is the

notion of truthfulness. Typically, one of the goals of the mechanism designer is to

ensure that the agents participating in the mechanism will not have any incentive

to misreport their private information. Towards this goal, the payments made to the

agents by the mechanism are crucial. However, there is an abundance of scenarios

in microeconomics where the payments are restricted (e.g., via budget constraints)

or even completely undesirable. This thesis focuses on two such problems that are

indicative of the challenges that arise when the payments are limited or absent. In

particular, fair division of indivisible items and reverse auctions with hard budget

constraints are studied, both from the game-theoretic and the algorithmic point of

view.

In the first part of the thesis, we study the problem of computing allocations

with maximin share guarantees—a recently introduced fairness notion. Given a set

of agents and a set of goods, the objective is to find a partition so that each agent

is guaranteed an approximation of his maximin share. Our main algorithmic result

is a 2/3-approximation, that runs in polynomial time for any number of agents and

items. Furthermore, we undertake a probabilistic analysis and provide a theoretical

justification of the experimental evidence reported in the literature indicating that

better approximations almost always exist.

From the mechanism design point of view, this is a setting where no monetary

transfers are allowed. Even for two agents and a few items, the problem becomes

strictly harder than its algorithmic counterpart, and the limitations imposed by truth-

fulness on the approximability of the problem become apparent. We focus on the case

of two players and our main result is a complete characterization of truthful mecha-

nisms that allocate all the items. Applying this result, we derive several consequences

https://www.aueb.gr/en
http://www.cs.aueb.gr/en

viii

on the design of mechanisms with fairness guarantees, such as maximin share fair-

ness and envy-freeness up to one item.

In the second part of the thesis, we study a family of reverse auctions with a budget

constraint. The general algorithmic problem is to purchase a set of resources, which

come at a cost, so as not to exceed a given budget and at the same time maximize

a given valuation function. This framework captures the budgeted version of several

well-known optimization problems, and when the resources are owned by strategic

agents the goal is to design truthful and budget-feasible mechanisms.

We obtain mechanisms with significantly improved approximation ratios for sev-

eral subclasses of submodular valuation functions, like coverage functions and cut

functions. We then provide a general scheme for designing deterministic and random-

ized mechanisms for a subclass of XOS problems which contains problems whose

feasible set forms an independence system. Some representative problems include,

among others, finding maximum weighted matchings and maximum weighted ma-

troid members. For most of the above, only randomized mechanisms with very high

approximation ratios were known prior to our results.

A purely algorithmic byproduct of our work is a polynomial-time
2e

e−1 -approxi-

mation algorithm for symmetric submodular maximization subject to a budget con-

straint. This is the best known factor achieved by a deterministic algorithm assuming

only a value oracle for the objective function.

Οικονοµικο Πανεπιστηµιο Αθηνων

Τµήµα Πληροφορικής

Περίληψη

της διδακτορικής διατριβής

Algorithmic and Mechanism Design Aspects of

Problems with Limited—or no—Payments

του Γεωργίου Αµανατίδη

Η πιο αξιοσηµείωτη διάκριση µεταξύ της σχεδίασης αλγορίθµων και της σχεδίασης

µηχανισµών είναι η έννοια της ϕιλαλήθειας (truthfulness). Κατά κανόνα, ένας από

τους στόχους του σχεδιαστή µηχανισµών είναι να εξασφαλίσει ότι οι παίκτες που συµ-

µετέχουν στον µηχανισµό δεν έχουν κανένα κίνητρο να παραποιήσουν το κοµµάτι της

εισόδου που αποτελεί προσωπική τους πληροφορία. Για την επίτευξη του στόχου αυτού,

οι πληρωµές που πραγµατοποιούνται στους παίκτες από τον µηχανισµό είναι κρίσιµες.

Ωστόσο, υπάρχουν πολλά σενάρια στη µικροοικονοµική ϑεωρία όπου οι πληρωµές εί-

ναι περιορισµένες (π.χ., λόγω ύπαρξης προϋπολογισµού) ή ακόµη και εντελώς ανεπι-

ϑύµητες. Η παρούσα διδακτορική διατριβή επικεντρώνεται σε δύο τέτοια προβλήµατα

που είναι ενδεικτικά των προκλήσεων που προκύπτουν όταν οι πληρωµές είναι περιορ-

ισµένες ή απουσιάζουν. Συγκεκριµένα, µελετάται ο δίκαιος διαµοιρασµός µη διαιρετών

αντικειµένων και οι αντίστροφες δηµοπρασίες µε αυστηρούς περιορισµούς προϋπολο-

γισµού, τόσο από την παιγνιοθεωρητική όσο και από την αλγοριθµική σκοπιά.

Στο πρώτο µέρος της διατριβής, µελετάµε το πρόβληµα του υπολογισµού διανοµών

µη διαιρετών αγαθών, οι οποίες παρέχουν εγγυήσεις ως προς τα µεγιστοελάχιστα µερίδια

(maximin shares) των παικτών—µια πρόσφατα ορισµένη έννοια δικαιότητας. ∆εδοµένου

ενός συνόλου παικτών και ενός συνόλου αγαθών, ο στόχος είναι να ϐρεθεί µια διανοµή

που να εγγυάται σε κάθε παίκτη µια προσέγγιση του µεγιστοελαχίστου µεριδίου του.

Το κύριο αλγοριθµικό αποτέλεσµά µας είναι ένας 2/3-προσεγγιστικός αλγόριθµος, ο

οποίος τρέχει σε πολυωνυµικό χρόνο για οποιονδήποτε αριθµό παικτών και αγαθών.

Επιπλέον, επιχειρούµε µια πιθανοτική ανάλυση και παρέχουµε µια ϑεωρητική αιτι-

ολόγηση των πειραµατικών δεδοµένων που αναφέρονται στη σχετική ϐιβλιογραφία και

που υποδεικνύουν ότι υπάρχουν σχεδόν πάντα καλύτερες προσεγγίσεις.

Από τη σκοπιά της σχεδίασης µηχανισµών, αυτό είναι ένα περιβάλλον στο οποίο δεν

επιτρέπονται πληρωµές. Ακόµη και για δύο παίκτες και λίγα αγαθά, το πρόβληµα είναι

x

αυστηρά δυσκολότερο από το αντίστοιχο αλγοριθµικό και γίνονται προφανείς οι περιορ-

ισµοί που επιβάλλει η ϕιλαλήθεια στην προσεγγισιµότητα του προβλήµατος. Εστιάζουµε

στην περίπτωση των δύο παικτών και το κύριο αποτέλεσµά µας είναι ένας πλήρης χαρακ-

τηρισµός των ϕιλαληθών µηχανισµών που κατανέµουν όλα τα αγαθά. Ο χαρακτηρισµός

αυτός έχει άµεσες συνέπειες στο σχεδιασµό µηχανισµών µε εγγυήσεις δικαιότητας, όπως

η δικαιότητα µεγιστοελαχίστου µεριδίου (maximin share fairness) και η απουσία ϕθό-

νου εξαιρουµένου το πολύ ενός αντικειµένου (envy-freeness up to one item).

Στο δεύτερο µέρος της διατριβής, µελετάµε µια οικογένεια αντίστροφων δηµοπρασιών

µε περιορισµένο προϋπολογισµό. Το γενικότερο αλγοριθµικό πρόβληµα είναι να αγορά-

σουµε ένα σύνολο πόρων, καθένας από τους οποίους έχει κάποιο κόστος, έτσι ώστε να

µην υπερβούµε έναν δεδοµένο προϋπολογισµό και ταυτόχρονα να µεγιστοποιήσουµε

µια δεδοµένη συνάρτηση αποτίµησης. Αυτό το πλαίσιο περιλαµβάνει τις παραλλαγές

πολλών γνωστών προβληµάτων ϐελτιστοποίησης όπου έχει προστεθεί και ένας περιορισ-

µός προϋπολογισµού. ΄Οταν οι πόροι ανήκουν σε στρατηγικούς παίκτες, ο στόχος είναι

να σχεδιαστούν ϕιλαλήθεις µηχανισµοί που δεν παραβιάζουν τον προϋπολογισµό.

Παίρνουµε µηχανισµούς µε σηµαντικά ϐελτιωµένους λόγους προσέγγισης για αρ-

κετές υποκατηγορίες υποµετρικών (submodular) συναρτήσεων, όπως οι συναρτήσεις

κάλυψης (coverage functions) και οι συναρτήσεις κοπής (cut functions). Στη συνέχεια

παρέχουµε ένα γενικό σχήµα για τον σχεδιασµό ντετερµινιστικών και τυχαιοποιηµένων

µηχανισµών για µια υποκλάση των XOS συναρτήσεων που περιέχει προβλήµατα των

οποίων το σύνολο εφικτών λύσεων σχηµατίζει ένα σύστηµα ανεξαρτησίας. Ορισµένα

αντιπροσωπευτικά προβλήµατα είναι, µεταξύ άλλων, η εύρεση µέγιστων σταθµισµένων

ταιριασµάτων (maximum weighted matchings) και µέγιστων σταθµισµένων µελών µητροει-

δών (maximum weighted matroid members). Για τα περισσότερα από τα παραπάνω,

πριν από τα αποτελέσµατά µας, ήταν γνωστοί µόνο τυχαιοποιηµένοι µηχανισµοί µε

πολύ υψηλούς λόγους προσέγγισης.

΄Ενα καθαρά αλγοριθµικό υποπροϊόν της δουλειάς µας είναι ένας πολυωνυµικός

2e
e−1 -προσεγγιστικός αλγόριθµος για το πρόβληµα της µεγιστοποίησης συµµετρικών υπ-

οµετρικών συναρτήσεων υπό περιορισµό προϋπολογισµού. Πρόκειται για τον καλύτερο

γνωστό λόγο προσέγγισης που επιτυγχάνεται από ντετερµινιστικό αλγόριθµο, υποθέτον-

τας µόνο κλήσεις σε ένα µαντείο για την αντικειµενική συνάρτηση.

xi

Acknowledgements

First and foremost, I would like to thank my advisor, Vangelis Markakis. It is hard

to avoid clichés here, but Vangelis has truly been an exemplary advisor to me. He

guided me with patience, he rekindled my passion for research, and gave me enough

space to develop into an independent researcher. Vangelis, for the constant support,

the guidance, and the inspiration, I thank you from the bottom of my heart.

I am also thankful to my good friend, and godfather to my son, Vassilis Zikas, for

his faith in me. He and my wife compelled me into starting a Ph.D. and I have to

admit that it has been way more fun than I had anticipated.

During my Ph.D. I was fortunate to collaborate with many wonderful people aside

from Vangelis: Joël Alwen, Nathanaël Barrot, Georgios Birmpas, George Christodoulou,

Jérôme Lang, Bernard Ries, Amin Saberi, Krzysztof Sornat, Eftychia Vakaliou, and

Vassilis Zikas.

I would like to thank fellow group members Georgios Birmpas and Artemis Tsikiridis

for the endless stimulating discussions and the spare cigarettes. Our regular inter-

actions greatly contributed to a pleasant and inspiring work environment and I will

miss them.

I would also like to thank my family, my in-laws, and my friends for all their love

and encouragement throughout the years. But most of all, I would like to thank my

dear wife, Kalliopi, for her unconditional love and support, for being my rock, for

making my days brighter. If it wasn’t for her, I would have never embarked on this

academic journey.

Last, but not least, I would like to thank my son, Dimitris, for all the nights that he

stayed up waiting for me to return from the office. Stealing and using his notebooks

has been an integral part of working on this thesis!

This work was partially supported by the European Union (European Social Fund - ESF)

and Greek national funds through the Operational Program “Education and Lifelong

Learning” of the National Strategic Reference Framework (NSRF) - Research Funding

Program: THALES (Algorithmic Game Theory [Mis: 377002] and Algorithms of Today

[Mis: 379414]).

xiii

To my other half, Kalliopi, and to our son, Dimitris.

xv

Contents

Abstract vii

Περίληψη ix

Acknowledgements xi

Preface 1

I Fair Allocation of Indivisible Goods 5

1 Introduction 7

1.1 Fair Division Without Incentives . 7

1.2 Item Allocation With Incentives . 8

1.3 Related Work . 9

1.4 Preliminaries and Notation . 12

1.4.1 Notation for n = 2 . 12

1.4.2 Fairness concepts . 12

2 Computing Maximin Share Allocations 17

2.1 Warmup: Useful Properties and a 1/2-Approximation 18

2.2 A Polynomial Time
(2

3 −ε
)
-Approximation 20

2.3 Two Special Cases . 27

2.3.1 The Case of Three Agents . 27

2.3.2 Values in {0,1,2} . 31

2.4 A Probabilistic Analysis . 37

2.5 Directions for Future Research . 44

3 Truthful Allocation Mechanisms Without Payments 45

3.1 Characterization of Truthful Mechanisms 46

3.1.1 A Non-Dictatorial Class of Mechanisms 46

3.1.2 Truthfulness and Picking-Exchange Mechanisms 48

3.1.3 Immediate Implications of Theorem 3.1.6 54

3.2 A Necessary Fairness Condition and its Implications 55

3.2.1 Implications of the Control Lemma. 55

3.2.2 Applications to Relaxed Notions of Fairness 57

xvi

3.3 Truthful Mechanisms for Many Players . 60

3.4 Directions for Future Research . 62

II Procurement Auctions with Budget Constraints 63

4 Introduction 65

4.1 Budget-Feasible Mechanism Design . 65

4.2 Related Work . 67

4.3 Preliminaries and Notation . 68

5 Mechanisms for Non-Decreasing Submodular Objectives 73

5.1 Optimizing Existing Mechanisms . 73

5.2 Polynomial-Time Deterministic Mechanisms 75

5.2.1 Budgeted Max Weighted Coverage 77

6 Going Beyond Monotonicity: Symmetric Submodular Objectives 81

6.1 The Core Idea: A Simple Algorithm . 83

6.2 A First Take on Mechanism Design . 87

6.2.1 Unweighted Cut Functions . 90

6.3 Symmetric Submodular Objectives Revisited 95

6.3.1 Weighted Cut Functions . 100

7 Going Beyond Submodular Objectives 103

7.1 Budgeted Max Weighted Matching . 104

7.1.1 Derandomization . 108

7.2 Independence System Knapsack Objectives 109

7.3 An Improved Upper Bound for XOS Objectives 112

7.4 Directions for Future Research . 115

A Missing Material from Section 3.1 117

B Missing Material from Chapter 6 141

Bibliography 145

1

Preface

During the last two decades an exciting research area has emerged, defined by the

interplay of algorithms, multi-agent systems, social choice theory, game theory, and

complexity. Classic game theory notions have been reexamined through the algorith-

mic lens, while questions on computational efficiency have been raised and, in many

cases, resolved. At the same time, this interaction of economics and computation

has breathed new life to countless classic optimization problems, as incentives had

to be taken into account and new objectives, like truthfulness or economic efficiency,

were added. Although the dividing lines between the subareas that were shaped over

the years are blurry, the general area came to be known as Algorithmic Game Theory

within the theoretical computer science community.

Crucial reasons behind the impressive advancement of this line of interdisci-

plinary research are the explosive growth of the Internet and the increasing appli-

cability of artificial intelligence. As noted in the seminal position paper of Papadim-

itriou (2001), “the most novel and defining [characteristic of the Internet] is its socio-

economic complexity”. Indeed, the present-day algorithm designer cannot ignore the

socioeconomics of complex networks. Large scale complex networks of autonomous

agents create opportunities to do things better, faster, and with a greater profit—

financial or social. What makes things particularly interesting from the computer

scientist’s angle is that most questions that arise are inherently algorithmic.

• How should agents (human or AI) split resources fairly?

• How can the structure of the underlying social network of the potential clients

benefit a company for advertising purposes?

• Can a potential employer utilize a large pool of specialized workers without

overpaying too much?

This thesis aims to address such questions, mainly from a mechanism design per-

spective.

A most notable difference of this approach from algorithm design are the incentives

of the parties involved. Very often, we would like to ensure that the agents participat-

ing in a mechanism have no incentive to misreport their private information, i.e., we

want to design truthful mechanisms. Towards this goal, the payments made to the

agents by the mechanism are crucial. However, like computational power, memory,

or time, money is a valuable and scarce resource. There is an abundance of scenarios

in microeconomics where the payments are restricted via budget constraints, or even

completely undesirable.

2 Preface

The focus of my work is on two such problems. Although the general subject is

very broad, and our treatment of it is far from being exhaustive, the problems studied

here are indicative of the challenges that arise when the payments are limited or

absent. In particular, fair division of indivisible items and reverse auctions with hard

budget constraints are studied, both from the game-theoretic and the algorithmic

point of view.

In Part I we study the problem of computing fair allocations when all the avail-

able goods are indivisible. In the setting we study, there are n agents with additive

valuation functions over a set of m indivisible goods and we want to allocate all the

goods in a manner that is considered fair in some sense. This is one of the most

standard and fundamental settings in fair division. Given that it is impossible to

have any approximation guarantees for classic fairness notions, like proportionality

and envy-freeness, in this setting, we mostly deal with maximin share fairness, a

recently introduced weaker fairness notion. The maximin share of a single agent is

the best he can guarantee to himself, if he was to partition the items in any way

he prefers into n bundles and then receive his least desirable bundle. The objective

then is to find an allocation, so that each player is guaranteed an approximation of

his maximin share. In Chapter 2 we study the problem from a purely algorithmic

perspective. Our main algorithmic result is a 2/3-approximation algorithm, that runs

in polynomial time for any number of agents and items. We also provide a polyno-

mial time 7/8-approximation algorithm for the intriguing three player case, as well

as an exact polynomial time algorithm for the case where all item values belong to

{0,1,2}. Furthermore, we undertake a probabilistic analysis and provide a theoretical

justification of the experimental evidence reported in the literature indicating that

better approximations almost always exist. In particular, we prove that in randomly

generated instances, maximin share allocations exist with high probability.

From the mechanism design point of view, this is a setting where no monetary

transfers are allowed. This is standard in microeconomics, where fair division prob-

lems often model scenarios where payments are not desirable, e.g., inheritances or

distribution of common goods. In Chapter 3 we study the problem assuming self-

interested, rational agents. Even for two agents and a few items, the problem be-

comes strictly harder than its algorithmic counterpart, and the limitations imposed

by truthfulness on the approximability of the problem become apparent. We focus on

the case of two players and our main result is a complete characterization of truthful

mechanisms that allocate all the items. This fundamental result goes well beyond the

quest for fairness and reveals an interesting structure underlying all truthful mecha-

nisms, showing that they can be decomposed into two components: a selection part

where players pick their best subset among prespecified choices determined by the

mechanism, and an exchange part where players are offered the chance to exchange

certain subsets if it is favorable to do so. Applying this result, we derive several conse-

quences on the design of mechanisms with fairness guarantees, including maximin

share fairness and envy-freeness up to one item. Finally, for the case of multiple

3

players, we provide a general class of truthful mechanisms that generalizes the class

of truthful mechanisms for two players in a non-trivial way.

In Part II we study a family of procurement (reverse) auctions where the auctioneer

has a hard budget constraint. The general algorithmic problem is (for the auctioneer)

to purchase a set of resources (each owned by a rational agent), which come at a

cost, so as not to exceed a given budget and at the same time maximize a given

valuation function. In the setting considered here, the true cost of each resource

is private and thus our goal is to design truthful mechanisms that provide a good

approximation to the optimal value for the auctioneer, and are budget-feasible, i.e.,

the sum of the payments to the agents does not exceed the budget. This framework

captures the budgeted versions of many well-known optimization problems and has

been motivated by recent application scenarios including crowdsourcing platforms,

where agents can be viewed as workers providing tasks, and influence maximization

in social networks, where agents correspond to influential users.

We obtain mechanisms with significantly improved approximation ratios for sev-

eral subclasses of submodular valuation functions. In Chapter 5 we provide a frame-

work for designing deterministic mechanisms for non-decreasing submodular func-

tions that have well-behaved LP formulations. As a highlight of our approach, we

improve the best known factor for coverage functions by a factor of 3.

In Chapter 6 the main focus is on symmetric submodular functions, an eminent

class of non-monotone objectives that contains cut functions. We propose truthful,

budget-feasible mechanisms, greatly improving the known approximation ratios for

these problems, while for many cases we achieve polynomial running time for the

first time. As an example, for the budgeted weighted cut problem we obtain the

first deterministic polynomial time mechanism with a 27.25-approximation, and for

unweighted cut functions we improve the approximation ratio for randomized mech-

anisms, from 564 down to 10. Analogous improvements are obtained for arbitrary

symmetric submodular functions. In the heart of our approach is a novel combination

of (approximate) local search with known mechanisms for non-decreasing submodu-

lar functions.

Going beyond submodularity, in Chapter 7, we provide a general scheme for de-

signing deterministic and randomized mechanisms for a subclass of XOS problems

which contains problems whose feasible set forms an independence system. Some

representative problems include, among others, finding maximum weighted match-

ings and maximum weighted matroid members. For most of such problems, only a

randomized 768-approximate mechanism was known prior to our results. Finally,

we briefly study the general class of XOS functions, where we improve the current

upper bound by a factor of 3.

A purely algorithmic byproduct of our work, in Chapter 6, is a polynomial-time

2e
e−1 -approximation algorithm for symmetric submodular maximization subject to a

budget constraint. Assuming only a value oracle for the objective function, this is the

best known factor achieved by a deterministic algorithm.

4 Preface

My work on the above topics resulted in the following papers:

1. Approximation Algorithms for Computing Maximin Share Allocations, 42nd In-

ternational Colloquium on Automata, Languages, and Programming, ICALP 2015,

Proceedings, Part I, pp. 39–51 (with E. Markakis, A.Nikzad, and A.Saberi).

[Chapter 2]

2. Truthful Allocation Mechanisms Without Payments: Characterization and Im-

plications on Fairness, 18th ACM conference on Economics and Computation, EC

2017, Proceedings, pp. 545-562 (with G. Birmpas, G. Christodoulou, and E.

Markakis). [Chapter 3]

3. On Truthful Mechanisms for Maximin Share Allocations, 25th International Joint

Conference on Artificial Intelligence, ĲCAI 2016, Proceedings, pp. 31-37 (with

G. Birmpas and E. Markakis).

4. On Budget-Feasible Mechanism Design for Symmetric Submodular Objectives,

submitted, (with G. Birmpas and E. Markakis). [Chapters 5 and 6].

5. Coverage, Matching, and Beyond: New Results on Budgeted Mechanism Design,

12th Conference on Web and Internet Economics, WINE 2016, Proceedings, pp.

414-428 (with G. Birmpas and E. Markakis). [Chapters 5 and 7]

In addition to fair division of indivisible items and reverse auctions with hard

budget constraints, I also worked on other topics during my Ph.D. This resulted in

the following completed papers:

6. Inequity Aversion Pricing over Social Networks: Approximation Algorithms and

Hardness Results, 41st International Symposium on Mathematical Foundations

of Computer Science, MFCS 2016, Proceedings, pp. 9:1-9:13 (with E. Markakis

and K. Sornat).

7. Multiple Referenda and Multiwinner Elections Using Hamming Distances: Com-

plexity and Manipulability, 14th International Conference on Autonomous Agents

and Multiagent Systems, AAMAS 2015, Proceedings, pp. 715-723 (with N. Bar-

rot, J. Lang, E. Markakis, and B. Ries).

5

Part I

Fair Allocation of

Indivisible Goods

7

Chapter 1

Introduction

1.1 Fair Division Without Incentives

In Chapter 2 we study a recently proposed fair division problem in the context of

allocating indivisible goods. Fair division has attracted the attention of various scien-

tific disciplines, including among others, mathematics, economics, and political sci-

ence. Ever since the first attempt for a formal treatment by Steinhaus, Banach, and

Knaster Steinhaus (1948), many interesting and challenging questions have emerged.

Over the past decades, a vast literature has developed (see, e.g., Brams and Taylor,

1996; Robertson and Webb, 1998; Moulin, 2003) and several notions of fairness have

been suggested. The area gradually gained popularity in computer science as well, as

most of the questions are inherently algorithmic (see, among others, Even and Paz,

1984; Edmonds and Pruhs, 2006; Woeginger and Sgall, 2007) for earlier works and

the surveys by Procaccia (2016) and by Bouveret, Chevaleyre, and Maudet (2016) on

more recent results.

The objective in fair division problems is to allocate a set of resources to a set

of n agents in a way that leaves every agent satisfied. In the continuous case, the

available resources are typically represented by the interval [0, 1], whereas in the

discrete case, we have a set of distinct, indivisible goods. The preferences of each

agent are represented by a valuation function, which is usually an additive function

(additive on the set of goods in the discrete case, or a probability distribution on

[0,1] in the continuous case). Given such a setup, many solution concepts have

been proposed as to what constitutes a fair solution. Some of the standard ones

include proportionality, envy-freeness, equitability and several variants of them. The

most related concept to our work is proportionality, where an allocation is called

proportional, if each agent receives a bundle of goods that is worth at least 1/n of the

total value according to his valuation function.

Interestingly, all the above mentioned solutions and several others can be attained

in the continuous case. Apart from mere existence, in some cases we can also have

efficient algorithms, see, e.g.,Even and Paz (1984) for proportionality and Aziz and

MacKenzie (2016) for some recent progress on envy-freeness. In the presence of indi-

visible goods however, the picture is quite different. We cannot guarantee existence

and it is even NP-hard to decide whether a given instance admits fair allocations. In

fact, in most cases it is hard to produce decent approximation guarantees.

8 Chapter 1. Introduction

Motivated by the question of what can we guarantee in the discrete case, we pay

particular attention to a concept recently introduced by Budish (2011), that can be

seen as a relaxation of proportionality. The rationale is as follows: suppose that an

agent, say agent i , is asked to partition the goods into n bundles and then the rest of

the agents choose a bundle before i . In the worst case, agent i will be left with his least

valuable bundle. Hence, a risk-averse agent would choose a partition that maximizes

the minimum value of a bundle in the partition. This value is called the maximin share

of agent i . The objective then is to find an allocation where every agent receives at least

his maximin share. Even for this notion, existence is not guaranteed under indivisible

goods (Procaccia and Wang, 2014; Kurokawa, Procaccia, and Wang, 2016), despite

the encouraging experimental evidence (Bouveret and Lemaître, 2016; Procaccia and

Wang, 2014). However, it is possible to have constant factor approximations, as has

been recently shown (Procaccia and Wang, 2014) (see also our related work section).

In Chapter 2 we study the above fair division problem mostly from an algorithmic

point of view. That is, we try to design algorithms that output allocations such

that each agent receives at least a constant fraction of his maximin share. We also

try to justify the experimental evidence about the existence of such allocations. In

Chapter 3, however, we turn to the game-theoretic version of the problem, where

agents may have incentives to misreport their valuations. In fact, to study the fair

division problem for two agents, we go way deeper and fully characterize all truthful

mechanisms that fully allocate the set of items.

1.2 Item Allocation With Incentives

In Chapter 3 we study a very elementary and fundamental model for allocating in-

divisible goods from a mechanism design viewpoint. Namely, we consider a set of

indivisible items that need to be allocated to a set of players. An outcome of the prob-

lem is an allocation of all the items to the players, i.e., a partition into bundles, and

each player evaluates an allocation by his own additive valuation function. Our pri-

mary motivation originates from the fair division literature, where such models have

been considered extensively. However, the same setting also appears in several do-

mains, including job scheduling, load balancing and many other resource allocation

problems.

Our focus is on understanding the interplay between truthfulness and fairness in

this setting. Hence, we want to identify the effects on fairness guarantees, imposed

by eliminating any incentives for the players to misreport their valuation functions.

This type of questions has been posed already in previous works and for various

notions of fairness, such as envy-freeness, or for the concept of maximin shares (see,

among others, Lipton et al., 2004; Caragiannis et al., 2009; Amanatidis, Birmpas,

and Markakis, 2016b). However, the results so far have been rather scarce in the

sense that a) in most cases, they concern impossibility results which are far from

being tight and b) the proof techniques are based on constructing specific families

1.3. Related Work 9

of instances that do not enhance our understanding on the structure of truthful

mechanisms, with the exception of Caragiannis et al. (2009) which, however, is only

for two players and two items.

In order to comprehend the trade-offs that are inherent between incentives and

fairness, we first take a step back and focus solely on truthfulness itself. As is quite

common in fair division models, we will not allow any monetary transfers, so that a

mechanism simply outputs an allocation of the items. Hence, the question we want

to begin with is: what is the structure of truthful allocation mechanisms?

There has been already a significant volume of works on characterizing truthful

allocation mechanisms for indivisible items, yet there are some important differences

from our approach. First, a typical line of work studies this question under the

additional assumption of Pareto efficiency or related notions (Pápai, 2000; Klaus

and Miyagawa, 2002; Ehlers and Klaus, 2003). The characterization results that

have been obtained show that the combination of truthfulness together with Pareto

efficiency tends to make the class of available deterministic mechanisms very poor;

only some types of dictatorship survive when imposing both criteria. Second, in some

cases the analysis is carried out without any restrictions on the class of valuation

functions, which again often results in a very limited class of mechanisms (see, e.g.,

Pápai, 2001). When moving to a specific class, such as the class of additive functions

which is usually assumed in fair division, it is conceivable that we can have a much

richer class of truthful mechanisms. The results above indicate that the known

characterizations of truthful mechanisms are also dependent on further assumptions,

which may be well justified in various scenarios, but they are not aligned with the

goal of fair division.

1.3 Related Work

For an overview of the classic fairness notions and related algorithmic results, we

refer the reader to the books of Brams and Taylor (1996), and Robertson and Webb

(1998). Maximin share fairness was introduced by Budish (2011) for ordinal utilities

(i.e., agents have rankings over alternatives), building on concepts by Moulin (1990).

Later on, Bouveret and Lemaître (2016) defined the notion for cardinal utilities, in

the form that we study it here, and provided many important insights as well as

experimental evidence. The first constant factor approximation algorithm was given

by Procaccia and Wang (2014), achieving a 2/3-approximation but in time exponential

in the number of agents.

On the negative side, constructions of instances where no maximin share alloca-

tion exists, even for n = 3, have been provided both by Procaccia and Wang (2014),

and by Kurokawa, Procaccia, and Wang (2016). These elaborate constructions, along

with the extensive experimentation of Bouveret and Lemaître (2016), reveal that it

has been challenging to produce better lower bounds, i.e., instances where no α-

approximation of a maximin share allocation exists, even for α very close to 1. Driven

10 Chapter 1. Introduction

by these observations, a probabilistic analysis, similar in spirit but more general than

ours, is carried out by Kurokawa, Procaccia, and Wang (2016). In our analysis in Sec-

tion 2.4, all values are uniformly drawn from [0,1]; Kurokawa, Procaccia, and Wang

(2016) show a similar result with ours but for a a wide range of distributions over

[0,1], establishing that maximin share allocations exist with high probability under

all such distributions. However, their analysis, general as it may be, needs very large

values of n to guarantee relatively high probability, hence it does not fully justify the

experimental results discussed above.

Recently, some variants of the problem have also been considered. Barman and

Murthy (2017) gave a constant factor approximation of 1/10 for the case where the

agents have submodular valuation functions. It remains an interesting open problem

to determine whether better factors are achievable for submodular, or other non-

additive functions. Along a different direction, Caragiannis et al. (2016) introduced

the notion of pairwise maximin share guarantee and provided approximation algo-

rithms. Although conceptually this is not too far apart from maximin shares, the two

notions are incomparable.

A seemingly related problem is that of max-min fairness, also known as the Santa

Claus problem (Asadpour and Saberi, 2007; Bansal and Sviridenko, 2006; Bezakova

and Dani, 2005). In this problem we want to find an allocation where the value

of the least happy person is maximized. With identical agents, this coincides with

our problem, but beyond this special case the two problems exhibit very different

behavior.

In the game-theoreting setting, the only work we are aware of in which a full

characterization is given for truthful mechanisms with indivisible items, additive val-

uations, and no further assumptions, is by Caragiannis et al. (2009). However, this is

only a characterization for two players and two items. Apart from characterizations,

there have been several works that try to quantify the effects of truthfulness on sev-

eral concepts of fairness. For the performance of truthful mechanisms with respect

to envy-freeness, see Caragiannis et al. (2009) and Lipton et al. (2004), whereas for

max-min fairness see Bezakova and Dani (2005). Coming to more recent results and

along the same spirit, Amanatidis, Birmpas, and Markakis (2016b) and Markakis and

Psomas (2011) study the notion of maximin share allocations, and a related notion

of worst-case guarantees respectively. They obtain separation results, showing that

the approximation factors achievable by truthful mechanisms are strictly worse than

the known algorithmic (nontruthful) results. Obtaining a better understanding for

the structure of truthful mechanisms and how they affect fairness has been an open

problem underlying all the above works. For a better and more complete elaboration

on fairness and the numerous fairness concepts that have been suggested, we refer

the reader to the books of Brams and Taylor (1996), Robertson and Webb (1998), and

Moulin (2003) and the recent surveys Bouveret, Chevaleyre, and Maudet (2016) and

Procaccia (2016).

1.3. Related Work 11

There has been a long series of works on characterizing mechanisms with indivis-

ible items beyond the context of fair division. Many works characterize the allocation

mechanisms that arise when we combine truthfulness with Pareto efficiency (see, e.g.,

Pápai, 2000; Klaus and Miyagawa, 2002; Ehlers and Klaus, 2003). Typically, such

mechanisms tend to be dictatorial, and it is also well known that economic efficiency

is mostly incompatible with fairness (see, e.g., Bouveret, Chevaleyre, and Maudet,

2016). Another assumption that has been used is nonbossiness, which means that

one cannot change the outcome without affecting his own bundle. For instance,

Svensson (1999) assumes nonbossiness in a setting where each player is interested

in acquiring only one item. For general valuations, this also leads to dictatorial al-

gorithms (Pápai, 2001). In most of these works ties are ignored by considering strict

preference orders over all subsets of the items, while in some cases it is also allowed

for the mechanism not to allocate all the items.

There is a relevant line of work for the setting of divisible goods (see, among others,

Chen et al., 2013; Cole, Gkatzelis, and Goel, 2013). We note that for additive valu-

ation functions, a mechanism for divisible items can be interpreted as a randomized

mechanism for indivisible items. This connection is already discussed and explored

in Guo and Conitzer (2010) and Aziz et al. (2016). In our work, we do not study ran-

domized mechanisms, however it is an interesting question to have characterization

results for such settings as well. Along this direction, see Mennle and Seuken (2014)

where a relaxed notion of truthfulness is studied.

Related to our work is also the literature on exchange markets. These are mod-

els where players are equipped with an initial endowment, e.g., a house or a set of

items. For the case where players can have multiple indivisible items as their initial

endowment, see Pápai (2003) and Pápai (2007). Exchange markets provide an exam-

ple where the existing characterizations go well beyond dictatorships and are closely

related to the exchange component of our mechanisms.

Finally, for settings with payments, the work of Dobzinski and Sundararajan

(2008), and independently of Christodoulou, Koutsoupias, and Vidali (2008), provided

a characterization of truthful mechanisms with two players and additive valuations

when all items are allocated. However, their characterization does not apply to our

setting because they make an additional assumption, namely decisiveness. It roughly

requires that each player should be able to receive any possible bundle of items,

by making an appropriate bid. Their motivation is the characterization of truthful

mechanisms with bounded makespan (maximum finishing time) for the scheduling

problem, and in their case decisiveness is necessary in order to achieve bounded

guarantees. In our case, our motivation is fairness, and decisiveness is a very strong

assumption which has the opposite effects of what we need; e.g., assigning the full-

bundle to a player is unacceptable in terms of fairness. Finally, Christodoulou and

Kovács (2011) give a global characterization of envy-free and truthful mechanisms for

settings with payments, when there are multiple players but only two items.

12 Chapter 1. Introduction

1.4 Preliminaries and Notation

For any k ∈N, we denote by [k] the set {1, . . . ,k}. Let N = [n] be a set of n agents and

M = [m] be a set of indivisible items. Following the usual setup in the fair division

literature, we assume each agent has an additive valuation function vi (·), so that for

every S ⊆ M , vi (S) =∑
j∈S vi ({ j }). For j ∈ M , we will use vi j instead of vi ({ j }).

We say that (T1,T2, . . . ,Tk) is a partition of a set S, if
⋃

i∈[k] Ti = S, and Ti ∩T j = ;
for any i , j ∈ [k] with i 6= j . Note that, contrary to the usual definition of a partition,

we do not require that Ti 6= ; for all i ∈ [n]. Given any subset S ⊆ M , an allocation of

S to the n agents is a partition T = (T1, ...,Tn). Let Πn(S) be the set of all partitions of

a set S into n bundles.

1.4.1 Notation for n = 2

By M we denote the set of all allocations of M to two players.

Specifically for the two player case, the set Vm of all possible profiles is Rm+ ×Rm+ ,

i.e., we assume that vi j > 0 for every i ∈ {1,2} and j ∈ M . For some statements we need

the assumption that the players’ valuation functions are such that no two sets have

the same value. So, let V 6=
m denote the set of such profiles, i.e.,

V 6=
m =

{
(v1, v2) ∈ Vm

∣∣∣ ∀S,T ⊆ [m] with S 6= T, and ∀i ∈ {1,2},
∑
j∈S

vi j 6=
∑
j∈T

vi j

}
.

A deterministic allocation mechanism with no monetary transfers, or simply a

mechanism, for allocating all the items in M = [m], is a mapping X from Vm to

M . For n = 2 this means that for any profile v, the outcome of the mechanism is

X (v) = (X1(v), X2(v)) ∈M , and Xi (v) denotes the set of items player i receives.

Definition 1.4.1. A mechanism X for two players is truthful if for any instance

v = (v1, v2), any player i ∈ {1,2}, and any v ′
i : vi (Xi (v)) ≥ vi (Xi (v ′

i ,v−i)).

Since we will repeatedly argue about intersections of Xi (v) with various subsets

of M , we use X S
i (v) as a shortcut for Xi (v)∩S, where S ⊆ M .

1.4.2 Fairness concepts

Several notions have emerged throughout the years as to what can be considered a

fair allocation. We define below the concepts that we will examine. We begin with two

of the most dominant solution concepts in fair division, namely proportionality and

envy-freeness.

Definition 1.4.2. An allocation T = (T1, ...,Tn) is

1. proportional, if vi (Ti) ≥ 1
n vi (M), for every i ∈ [n].

2. envy-free, if for every i , j ∈ [n], vi (Ti) ≥ vi (T j).

1.4. Preliminaries and Notation 13

Proportionality was considered in the very first work on fair division by Steinhaus

(1948). Envy-freeness was suggested later by Gamow and Stern (1958), and with a

more formal argumentation by Foley (1967) and Varian (1974).

Envy-freeness is a stricter notion than proportionality, but even for the latter

existence cannot be guaranteed under indivisible goods. One can also consider ap-

proximation versions of these problems as follows: Given an instance I , let E(I) be the

minimum possible envy that can be achieved at I , among all possible allocations. We

say that a mechanism achieves a ρ-approximation, if for every instance I , it produces

an allocation where the envy between any pair of players is at most ρE(I). Simi-

larly for proportionality, suppose that an instance I admits an allocation where every

player receives a value of at least
c(I)

n vi (M) for some c(I) ≤ 1. Then a ρ-approximation

would mean that each player is guaranteed a bundle with value at least
ρc(I)

n vi (M).

Apart from the approximation versions, the fact that we cannot always have pro-

portional or envy-free allocations gives rise to relaxations of these definitions, with

the hope of obtaining more positive results. We describe below three such relax-

ations, all of which admit either exact or constant-factor approximation algorithms

(not necessarily truthful) in polynomial time.

The first such relaxation is the concept of envy-freeness up to one item, where

each person may envy another player by an amount which does not exceed the value

of a single item in the other player’s bundle. Formally:

Definition 1.4.3. An allocation T = (T1, ...,Tn) is envy-free up to one item, if for every

pair of agents i , j ∈ [n], there exists an item g ∈ T j , such that vi (Ti) ≥ vi (T j {g }).

It is quite easy to achieve envy-freeness up to one item, e.g., a round-robin al-

gorithm that alternates between the players and gives them in each step their best

remaining item suffices. Other algorithms are also known to satisfy this criterion (see

Lipton et al., 2004).

A more interesting relaxation from an algorithmic point of view, comes from the

notion of maximin share guarantees, recently proposed by Budish (2011). For two

players, the maximin share of a player i is the value that he could achieve by being

the cutter in a discretized form of the cut and choose protocol. This is a guarantee

for player i , if he would partition the items into two bundles so as to maximize the

value of the least valued bundle. We define below the approximate version of maximin

share fairness for any number of agents.

Definition 1.4.4. Given a set of n agents, and any set S ⊆ M , the n-maximin share

of an agent i with respect to S, is:

µi (n,S) = max
T∈Πn (S)

min
T j∈T

vi (T j) .

Note that µi (n,S) depends on the valuation function vi (·) but is independent of

any other function v j (·) for j 6= i . When S = M , we refer to µi (n, M) as the maximin

share of agent i . The solution concept we study asks for a partition that gives each

agent his maximin share.

14 Chapter 1. Introduction

Definition 1.4.5. Given a set of agents N = [n], and a set of goods M , a partition

T = (T1, ...,Tn) ∈Πn(M) is called a ρ-approximate maximin share allocation if vi (Ti) ≥
ρ ·µi (n, M) , for every agent i ∈ [n]. When ρ = 1, T is just called a maximin share

allocation.

For two players maximin share allocations always exist and even though they are

NP-hard to compute, we have a PTAS by reducing this to standard job scheduling

problems. Hence each player can receive a value of at least (1− ε)µi . For a higher

number of players, however, as shown in Procaccia and Wang (2014), maximin share

allocations do not always exist. Hence, our focus is on approximation algorithms,

i.e., on algorithms that produce ρ-approximate maximin share allocations, for some

ρ ≤ 1.

Before we continue, a few words are in order regarding the appeal of this new

concept. First of all, it is very easy to see that having a maximin share guarantee to

every agent forms a relaxation of proportionality, see Claim 2.1.1. Given the known

impossibility results for proportional allocations under indivisible items, it is worth

investigating whether such relaxations are easier to attain. Second, the maximin

share guarantee has an intuitive interpretation; for an agent i , it is the value that

could be achieved if we run the generalization of the cut-and-choose protocol for

multiple agents, with i being the cutter. In other words, it is the value that agent i

can guarantee to himself, if he were given the advantage to control the partition of

the items into bundles, but not the allocation of the bundles to the agents.

Example 1. Consider an instance with three agents and five items:

a b c d e

Agent 1 1/2 1/2 1/3 1/3 1/3

Agent 2 1/2 1/4 1/4 1/4 0

Agent 3 1/2 1/2 1 1/2 1/2

If M = {a,b,c,d ,e} is the set of items, one can see that µ1(3, M) = 1/2, µ2(3, M) = 1/4,

µ3(3, M) = 1. E.g., for agent 1, no matter how he partitions the items into three

bundles, the worst bundle will be worth at most 1/2 for him, and he achieves this

with the partition ({a}, {b,c}, {d ,e}). Similarly, agent 3 can guarantee a value of 1 (which

is best possible as it is equal to v3(M)/n) by the partition ({a,b}, {c}, {d ,e}).

Note that this instance admits a maximin share allocation, e.g., ({a}, {b,c}, {d ,e}),

and in fact this is not unique. Note also that if we remove some agent, say agent 2,

the maximin values for the other two agents increase. E.g., µ1(2, M) = 1, achieved by

the partition ({a,b}, {c,d ,e}). Similarly, µ3(2, M) = 3/2.

Finally, a related approach was undertaken by Hill (1987). This work examined

what is the worst case guarantee that a player can have as a function of the total

number of players and the maximum value of an item across all players. Since this

fairness notion has a rather complicated definition and is never used for more than

two agents in this thesis, we only define it for n = 2. In this case, the following function

1.4. Preliminaries and Notation 15

was identified precisely as the guarantee that can be given to each player. Note that

the total value of the items is normalized to 1 in this case.

Definition 1.4.6. Let V2 : [0,1] → [0,1/2] be the unique nonincreasing function satis-

fying V2(α) = 1/2 for α= 0, whereas for α> 0:

V2(α) =
{

1−kα if α ∈ Ik

1− (k+1)
2(k+1)−1 if α ∈ Jk

where for any integer k ≥ 1, Ik =
[

k+1
k(2(k+1)−1) , 1

2k−1

]
and Jk =

(
1

2(k+1)−1 , k+1
k(2(k+1)−1)

)
.

Markakis and Psomas (2011) proved that for two players, there always exists

an allocation such that each player i receives at least V2(αi), where αi = max j∈[m] vi j .

The approximation version of this notion would be to construct allocations where each

player receives a value of at least ρV2(αi). Recently, a stricter variant of this guarantee

has been provided by Gourvès, Monnot, and Tlilane (2015) (also see Remark 3.2.9).

17

Chapter 2

Computing Maximin Share Allocations
1

In this chapter we deal with the problem of computing maximin share allocations

from an algorithmic perspective, i.e., without taking incentives into account.

Our main result, in Section 2.2, is a (2/3− ε)-approximation algorithm, for any

constant ε> 0, that runs in polynomial time for any number of agents and any num-

ber of goods. That is, the algorithm produces an allocation where every agent receives

a bundle worth at least 2/3−ε of his maximin share. Our result improves upon the

2/3-approximation of Procaccia and Wang (2014), which runs in polynomial time only

for a constant number of agents. To achieve this, we redesign certain parts of their al-

gorithm, arguing about the existence of appropriate, carefully constructed matchings

in a bipartite graph representation of the problem. Before that, in Section 2.1, we

provide a much simpler and faster 1/2-approximation algorithm. Despite the worse

factor, this algorithm still has its own merit due to its simplicity.

Moreover, we study two special cases, motivated by previous works. The first one

is the case of n = 3 agents. This is an interesting turning point on the approximability

of the problem; for n = 2, there always exist maximin share allocations, but adding a

third agent makes the problem significantly more complex, and the best known ratio

was 3/4 (Procaccia and Wang, 2014). We provide an algorithm with an approximation

guarantee of 7/8, by examining more deeply the set of allowed matchings that we

can use to satisfy the agents. The second case is the setting where all item values

belong to {0,1,2}. This is an extension of the {0,1} setting studied by Bouveret and

Lemaître (2016) and we show that there always exists a maximin share allocation, for

any number of agents.

Finally, motivated by the apparent difficulty in finding impossibility results on the

approximability of the problem, we undertake a probabilistic analysis in Section 2.4.

Our analysis shows that in randomly generated instances, maximin share allocations

exist with high probability. This may be seen as a justification of the reported exper-

imental evidence (Bouveret and Lemaître, 2016; Procaccia and Wang, 2014), which

show that maximin share allocations exist in most cases.

1
A conference paper containing most results of this chapter appeared in ICALP ’15 (Amanatidis et al.,

2015).

18 Chapter 2. Computing Maximin Share Allocations

2.1 Warmup: Useful Properties and a 1/2-Approximation

We find it instructive to provide first a simpler and faster algorithm that achieves a

worse approximation of 1/2. In the course of obtaining this algorithm, we also identify

some important properties and insights that we will use in the next sections.

We start with an upper bound on our solution for each agent. The maximin share

guarantee is a relaxation of proportionality, so we trivially have:

Claim 2.1.1. For every i ∈ N and every S ⊆ M ,

µi (n,S) ≤ vi (S)

n
=

∑
j∈S vi j

n
.

Proof. This follows by the definition of maximin share. If there existed a partition

where the minimum value for agent i exceeded the above bound, then the total value

for agent i would be more than
∑

j∈S vi j .

Based on this, we now show how to get an additive approximation. Algorithm

1 below achieves an additive approximation of vmax , where vmax = maxi , j vi j . This

simple algorithm, which we will refer to as the Greedy Round-Robin Algorithm, has

also been discussed by Bouveret and Lemaître (2016), where it was shown that when

all item values are in {0,1}, it produces an exact maximin share allocation. At the same

time, we note that the algorithm also achieves envy-freeness up to one item, another

solution concept defined by Budish (2011), and further discussed in Caragiannis

et al. (2016). Finally, some variations of this algorithm have also been used in other

allocation problems, see, e.g., Brams and King (2005), or the protocol in Bouveret and

Lang (2011). We discuss further the properties of Greedy Round-Robin in Section 2.4.

In the statement of the algorithm below, the set VN is the set of valuation functions

VN = {vi : i ∈ N }, which can be encoded as a valuation matrix since the functions are

additive.

ALGORITHM 1: Greedy Round-Robin(N , M ,VN)

1 Set Si =; for each i ∈ N .

2 Fix an ordering of the agents arbitrarily.

3 while ∃ unallocated items do

4 Si = Si ∪ { j }, where i is the next agent to be examined in the current round

(proceeding in a round-robin fashion) and j is i ’s most desired item among the

currently unallocated items.

5 return (S1, ...,Sn)

Theorem 2.1.2. If (S1, ...,Sn) is the output of Algorithm 1, then for every i ∈ N ,

vi (Si) ≥
∑

j∈M vi j

n
− vmax ≥µi (n, M)− vmax .

Proof. Let (S1, ...,Sn) be the output of Algorithm 1. We first prove the following claim

about the envy of each agent towards the rest of the agents:

2.1. Warmup: Useful Properties and a 1/2-Approximation 19

Claim 2.1.3. For every i , j ∈ N , vi (Si) ≥ vi (S j)− vmax .

Proof of Claim 2.1.3. Fix an agent i , and let j 6= i . We will upper bound the difference

vi (S j)− vi (Si). If j comes after i in the order chosen by the algorithm, then the

statement of the claim trivially holds, since i always picks an item at least as desirable

as the one j picks. Suppose that j precedes i in the ordering. The algorithm proceeds

in `= dm/ne rounds. In each round k, let rk and r ′
k be the items allocated to j and i

respectively. Then

vi (S j)− vi (Si) = (vi ,r1 − vi ,r ′
1
)+ (vi ,r2 − vi ,r ′

2
)+·· ·+ (vi ,r` − vi ,r ′

`
) .

Note that there may be no item r ′
`

in the last round if the algorithm runs out of goods

but this does not affect the analysis (simply set vi ,r ′
`
= 0).

Since agent i picks his most desirable item when it is his turn to choose, this

means that for two consecutive rounds k and k +1 it holds that vi ,r ′
k
≥ vi ,rk+1 . This

directly implies that vi (S j)− vi (Si) ≤ vi ,r1 − vi ,r ′
`
≤ vi ,r1 ≤ vmax . �

If we now sum up the statement of Claim 2.1.3 for each j , we get: nvi (Si) ≥∑
j vi (S j)−nvmax , which implies

vi (Si) ≥
∑

j vi (S j)

n
− vmax =

∑
j∈M vi j

n
− vmax ≥µi (n, M)− vmax ,

where the last inequality holds by Claim 2.1.1.

The next important ingredient is the following monotonicity property, which says

that we can allocate a single good to an agent without decreasing the maximin share

of other agents. Note that this lemma also follows from Lemma 1 of Bouveret and

Lemaître (2016), yet, for completeness, we prove it here as well.

Lemma 2.1.4 (Monotonicity property). For any agent i and any good j , it holds that

µi (n −1, M { j }) ≥µi (n, M) .

Proof. Let us look at agent i , and consider a partition of M that attains his maximin

share. Let (S1, ...,Sn) be this partition. Without loss of generality, suppose j ∈ S1.

Consider the remaining partition (S2, ...,Sn) enhanced in an arbitrary way by the items

of S1 { j }. This is a (n−1)-partition of M { j } where the value of agent i for any bundle

is at least µi (n, M). Thus, we have µi (n −1, M { j }) ≥µi (n, M).

We are now ready for the 1/2-approximation, obtained by Algorithm 2 below,

which is based on using Greedy Round-Robin, but only after we allocate first the

most valuable goods. This is done so that the value of vmax drops to an extent that

Greedy Round-Robin can achieve a multiplicative approximation.

20 Chapter 2. Computing Maximin Share Allocations

ALGORITHM 2: apx-mms1/2(N , M ,VN)

1 Set S = M

2 for i = 1 to |N | do

3 Let αi =
∑

j∈S vi j

|N |
4 while ∃i , j s.t. vi j ≥αi /2 do

5 Allocate j to i .

6 S = S { j }

7 N = N {i }

8 Recompute the αi s.

9 Run Greedy Round-Robin on the remaining instance.

Theorem 2.1.5. Let N be a set of n agents, and let M be a set of goods. Algorithm 2

produces an allocation (S1, ...,Sn) such that

vi (Si) ≥ 1

2
µi (n, M) , ∀i ∈ N .

Proof. We will distinguish two cases. Consider an agent i who was allocated a single

item during the first phase of the algorithm (lines 4 - 8). Suppose that at the time

when i was given his item, there were n1 active agents, n1 ≤ n, and that S was the set

of currently unallocated items. By the design of the algorithm, this means that the

value of what i received is at least∑
j∈S vi j

2n1
≥ 1

2
µi (n1,S)

where the inequality follows by Claim 2.1.1. But now if we apply the monotonicity

property (Lemma 2.1.4) n−n1 times, we get that µi (n1,S) ≥µi (n, M), and we are done.

Consider now an agent i , who gets a bundle of goods according to Greedy Round-

Robin, in the second phase of the algorithm. Let n2 be the number of active agents at

that point, and S be the set of goods that are unallocated before Greedy Round-Robin

is executed. We know that vmax at that point is less than half the current value of αi

for agent i . Hence by the additive guarantee of Greedy Round-Robin, we have that

the bundle received by agent i has value at least∑
j∈S vi j

n2
− vmax >

∑
j∈S vi j

n2
− αi

2
=

∑
j∈S vi j

2n2
≥ 1

2
µi (n2,S) .

Again, after applying the monotonicity property repeatedly, we get that µi (n2,S) ≥
µi (n, M), which completes the proof.

2.2 A Polynomial Time
(

2
3 −ε

)
-Approximation

The main result of this section is Theorem 2.2.1, establishing a polynomial time

algorithm for achieving a 2/3-approximation to the maximin share of each agent.

Theorem 2.2.1. Let N be a set of n agents, and let M be a set of goods. For any

constant ε > 0, Algorithm 3 produces in polynomial time an allocation (S1, ...,Sn), such

2.2. A Polynomial Time
(2

3 −ε
)
-Approximation 21

that

vi (Si) ≥
(

2

3
−ε

)
µi (n, M) , ∀i ∈ N .

Our result is based on the algorithm by Procaccia and Wang (2014), which also

guarantees to each agent a 2/3-approximation. However, their algorithm runs in

polynomial time only for a constant number of agents. Here, we identify the source of

exponentiality and take a different approach regarding certain parts of the algorithm.

For the sake of completeness, we first present the necessary related results of Pro-

caccia and Wang (2014), before we discuss the steps that are needed to obtain our

result.

First of all, we note that even the computation of the maximin share values is

already a hard problem. For a single agent i , the problem of deciding whether

µi (n, M) ≥ k for a given k is NP-complete. However, a PTAS follows by the work

of Woeginger (1997). In the original paper, which is in the context of job scheduling,

Woeginger gave a PTAS for maximizing the minimum completion time on identical

machines. But this scheduling problem is identical to computing a maximin parti-

tion with respect to a given agent i . Indeed, from agent i ’s perspective, it is enough to

think of the machines as identical agents (the only input that we need for computing

µi (n, M) is the valuation function of i). Hence:

Theorem 2.2.2 (Follows by Woeginger (1997)). Suppose we have a set M of goods to be

divided among n agents. Then, for each agent i , there exists a PTAS for approximating

µi (n, M).

A central quantity in the algorithm of Procaccia and Wang (2014) is the n-density

balance parameter, denoted by ρn and defined below. Before stating the definition, we

give for clarity the high level idea, which can be seen as an attempt to generalize the

monotonicity property of Lemma 2.1.4. Assume that in the course of an algorithm,

we have used a subset of the items to “satisfy” some of the agents, and that those

items do not have “too much” value for the rest of the agents. If k is the number of

remaining agents, and S is the remaining set of goods, then we should expect to be

able to “satisfy” these k agents using the items in S. A good approximation in this

reduced instance however, would only be an approximation with respect to µi (k,S).

Hence, in order to hope for an approximation algorithm for the original instance, we

would need to examine how µi (k,S) relates to µi (n, M). Essentially, the parameter ρn

is the best guarantee one can hope to achieve for the remaining agents, based only

on the fact that the complement of the set left to be shared is of relatively small value.

Formally:

Definition 2.2.3 (Procaccia and Wang (2014)). For any number n of agents, let

ρn = max

{
λ

∣∣∣∣ ∀M ,∀ additive vi ∈ (R+)2M
,∀S ⊆ M ,∀k,` s.t. k +`= n,

vi (M S) ≤ `λµi (n, M) ⇒µi (k,S) ≥λµi (n, M)

}
.

After a quite technical analysis, Procaccia and Wang calculate the exact value of

ρn in the following lemma.

22 Chapter 2. Computing Maximin Share Allocations

Lemma 2.2.4 (Lemma 3.2 of Procaccia and Wang (2014)). For any n ≥ 2,

ρn = 2bncodd

3bncodd −1
> 2

3
,

where bncodd denotes the largest odd integer less than or equal to n.

We are now ready to state our algorithm, referred to as apx-mms (Algorithm 3

below). We elaborate on the crucial differences between Algorithm 3 and the result

of Procaccia and Wang (2014) after Lemma 2.2.5. At first, the algorithm computes

each agent’s (1−ε′)-approximate maximin value using Woeginger’s PTAS, where ε′ =
3ε
4 . Let ξ = (ξ1, . . . ,ξn) be the vector of these values. Hence, ∀i , µi (n, M) ≥ ξi ≥ (1−
ε′)µi (n, M). Then, apx-mms makes a call to the recursive algorithm rec-mms (Algorithm

4) to compute a
(2

3 −ε
)
-approximate partition. rec-mms takes the arguments ε′,n = |N |,

ξ, S (the set of items that have not been allocated yet), K (the set of agents that have

not received a share of items yet), and the valuation functions VK = {vi |i ∈ K }.

The guarantee provided by rec-mms is that as long as the already allocated goods

are not worth too much for the currently active agents of K , we can satisfy them with

the remaining goods. More formally, under the assumption that

∀i ∈ K , vi (M S) ≤ (n −|K |)ρnµi (n, M) , (2.1)

which we will show that it holds before each call, rec-mms(ε′,n,ξ,S,K ,VK) computes a

|K |-partition of S, so that each agent receives items of value at least (1−ε′)ρnξi .

The initial call of the recursion is, of course, rec-mms(ε′,n,ξ, M , N ,VN). Before

moving on to the next recursive call, rec-mms appropriately allocates some of the

items to some of the agents, so that they receive value at least (1−ε′)ρnξi each. This is

achieved by identifying an appropriate matching between some currently unsatisfied

agents and certain bundles of items, as described in the algorithm. In particular, the

most important step in the algorithm is to first compute the set X +
(line 6), which is

the set of agents that will not be matched in the current call. The remaining active

agents, i.e., K X +
, are then guaranteed to get matched in the current round, whereas

X +
will be satisfied in the next recursive calls. In order to ensure this for X +

, rec-mms

guarantees that inequality (2.1) holds for K = X +
and with S being the rest of the

items. Note that (2.1) trivially holds for the initial call of rec-mms, where K = N and

S = M .

ALGORITHM 3: apx-mms(ε, N , M ,VN)

1 ε′ = 3ε
4

2 for i = 1 to |N | do

3 Use Woeginger’s PTAS to compute a (1−ε′)-approximation ξi of µi (|N |, M). Let

ξ= (ξ1, . . . ,ξn).

4 return rec-mms(ε′, |N |,ξ, M , N ,VN)

2.2. A Polynomial Time
(2

3 −ε
)
-Approximation 23

For simplicity, in the description of rec-mms, we assume that K = {1,2, . . ., |K |}.
Also, for the bipartite graph defined in line 5 of the algorithm, by Γ(X +) we denote the

set of neighbors of the vertices in X +
.

ALGORITHM 4: rec-mms(ε′,n,ξ,S,K ,VK)

1 if |K | = 1 then

2 Allocate all of S to agent 1.

3 else

4 Use Woeginger’s PTAS to compute a (1−ε′)-approximate |K |-maximin partition of S

with respect to agent 1 from K , say (S1, . . . ,S|K |).
5 Create a bipartite graph G = (X ∪Y ,E), where X = Y = K and E = {(i , j) | i ∈ X , j ∈ Y ,

vi (S j) ≥ (1−ε′)ρnξi }.

6 Find a set X + ⊂ X , as described in Lemma 2.2.5.

7 Given a perfect matching A, between X X +
and a subset of Y Γ(X +), allocate S j to

agent i iff (i , j) ∈ A (the matching is a byproduct of line 6).

8 if X + =; then

9 Output the above allocation.

10 else

11 Output the above allocation, together with rec-mms(ε′,n,ξ,S∗, X +,VX +), where

S∗
is the subset of S not allocated in line 7.

To proceed with the analysis, and since the choice of X +
plays an important role

(line 6 of Algorithm 4), we should first clarify what properties of X +
are needed for

the algorithm to work. Lemma 2.2.5 is the most crucial part in the design of our

algorithm.

Lemma 2.2.5. Assume that for n, M , S, K , VK inequality (2.1) holds and let G =
(X ∪Y ,E) be the bipartite graph defined in line 5 of rec-mms. Then there exists a subset

X +
of X {1}, such that:

(i) X +
can be found efficiently.

(ii) There exists a perfect matching between X X +
and a subset of Y Γ(X +).

(iii) If we allocate subsets to agents according to such a matching (as described in

line 7) and X + 6= ;, then inequality (2.1) holds for n, M , S∗
, X +

, VX + where S∗ ⊆ S

is the unallocated set of items, i.e.:

∀i ∈ X +, vi (M S∗) ≤ (n −|X +|)ρnµi (n, M) .

Before we prove Lemma 2.2.5, we elaborate on the main differences between our

setup and the approach of Procaccia and Wang (2014):

Choice of X +. In Procaccia and Wang (2014), X +
is defined as argmaxZ⊆K {1}{|Z | | |Z | ≥

|Γ(Z)|}. Clearly, when n is constant, so is |K |, and thus the computation of X +
is

trivial. However, it is not clear how to efficiently find such a set in general, when n is

not constant. We propose a definition of X +
, which is efficiently computable and has

24 Chapter 2. Computing Maximin Share Allocations

the desired properties. In short, our X +
is any appropriately selected counterexample

to Hall’s Theorem for the graph G constructed in line 5.

Choice of ε. The algorithm works for any ε > 0, but Procaccia and Wang (2014)

choose an ε that depends on n, and it is such that (1−ε)ρn ≥ 2
3 . This is possible since

for any n, ρn ≥ 2
3

(
1+ 1

3n−1

)
. However, in this case, the running time of Woeginger’s

PTAS (line 4) is not polynomial in n. Here, we consider any fixed ε, independent of n,

hence the approximation ratio of
2
3 −ε.

The formal definition of X +
is given within the proof of Lemma 2.2.5 that follows.

Proof of Lemma 2.2.5. We will show that either X + =; (in the case where G has a per-

fect matching), or some set X +
with X + ∈ {

Z ⊆ X : |Z | > |Γ(Z)|∧∃ matching of size |X
Z | in G {Z ∪Γ(Z)}

}
has the desired properties. Moreover, we propose a way to find

such a set efficiently. We first find a maximum matching B of G. If |B | = |K |, then we

are done, since for X + =;, properties (i) and (ii) of Lemma 2.2.5 hold, while we need

not check (iii). If |B | < |K |, then there must be a subset of X violating the condition of

Hall’s Theorem.
2

Let Xu , Xm be the partition of X in unmatched and matched vertices

respectively, according to B , with Xu 6= ;, Xm 6= ;. Similarly, we define Yu ,Ym.

We now construct a directed graph G ′ = (X ∪Y ,E ′), where we direct all edges of G

from X to Y , and on top of that, we add one copy of each edge of the matching but

with direction from Y to X . In particular, ∀i ∈ X ,∀ j ∈ Y , if (i , j) ∈ E then (i , j) ∈ E ′
,

and moreover if (i , j) ∈ B then (j , i) ∈ E ′
. We claim that the following set satisfies the

desired properties

X + := Xu ∪ {v ∈ X : v is reachable from Xu in G ′} .

Note that X +
is easy to compute; after finding the maximum matching in G, and

constructing G ′
, we can run a depth-first search in each connected component of G ′

,

starting from the vertices of Xu. See also Figure 2.1, after the proof of Theorem 2.2.1

for an illustration.

Given the definition of X +
, we now show property (ii). Back to the original graph

G, we first claim that |X +| > |Γ(X +)|. To prove this, note that if j ∈ Γ(X +) in G, then

j ∈ Ym. If not, then it is not difficult to see that there is an augmenting path from a

vertex in Xu to j , which contradicts the maximality of B . Indeed, since j ∈ Γ(X +), let

i be a neighbor of j in X +
. If i ∈ Xu, then the edge (i , j) would enlarge the matching.

Otherwise, i ∈ Xm and since also i ∈ X +
, there is a path in G ′

from some vertex of

Xu to i . But this path by construction of the directed graph G ′
must consist of an

alternation of unmatched and matched edges, hence together with (i , j) we have an

augmenting path.

Therefore, Γ(X +) ⊆ Ym, i.e., for any j ∈ Γ(X +), there is an edge (i , j) in the matching

B . But then i has to belong to X +
by the construction of G ′

(and since j ∈ Γ(X +)).

2
The special case of Hall’s Theorem (Hall, 1935) used here, states that given a bipartite graph G =

(X ∪Y ,E), where X ,Y are disjoint independent sets with |X | = |Y |, there is a perfect matching in G if and

only if |W | ≤ |Γ(W)| for every W ⊆ X .

2.2. A Polynomial Time
(2

3 −ε
)
-Approximation 25

To sum up: for any j ∈ Γ(X +), there is exactly one distinct vertex i , with (i , j) ∈ E ,

and i ∈ X + ∩ Xm, i.e., |X + ∩ Xm | ≥ |Γ(X +)|. In fact, we have equality here, because

it is also true that for any i ∈ X + ∩ Xm, there is a distinct vertex j ∈ Ym which is

trivially reachable from X +
. Hence, |X + ∩ Xm | = |Γ(X +)|. Since Xu 6= ;, we have

|X +| = |Xu |+ |X +∩Xm | ≥ 1+|Γ(X +)|. So, |X +| > |Γ(X +)|.
Also, note that X + ⊆ X {1}, because for any Z ⊆ X that contains vertex 1 we

have |Γ(Z)| = |K | ≥ |Z |. This is due to the fact that for any vertex j ∈ Y , the edge

(1, j) is present by the construction, since v1(S j) ≥ (1−ε′)µ1(k,S) ≥ (1−ε′)ρnµ1(n, M) ≥
(1−ε′)ρnξ1, for all 1 ≤ j ≤ |K |.

We now claim that if we remove X +
and Γ(X +) from G, then the restriction of

B on the remaining graph, still matches all vertices of X X +
, establishing property

(ii). Indeed, note first that for any i ∈ X X +
, it has to hold that i ∈ Xm, since X +

contains Xu. Also, for any edge (i , j) ∈ B with i ∈ X and j ∈ Γ(X +), we have i ∈ X +

by the construction of X +
. So, for any i ∈ X X +

, its pair in B belongs to Y Γ(X +).

Equivalently, B induces a perfect matching between X X +
and a subset of Y Γ(X +)

(this is the matching A in line 7 of the algorithm).

What is left to prove is that property (iii) also holds for X +
. This can be done by

the same arguments as in Procaccia and Wang (2014), specifically by the following

lemma which can be inferred from their work.

Lemma 2.2.6 (Procaccia and Wang (2014), end of Subsection 3.1). Assume that

inequality (2.1) holds for n, M , S, K , VK , and let G be the graph defined in line 5. For

any Z ⊆ X , if there exists a perfect matching between X Z and a subset of Y Γ(Z), say

Y ∗
, and there are no edges between Z and Y ∗

in G, then property (iii) holds as well.

Clearly, there are no edges between X +
and Y Γ(X +). Hence, Lemma 2.2.6 can

be applied to X +
, completing the proof.

Given Lemma 2.2.5, we can now prove the main result of this section, the correct-

ness of apx-mms.

Proof of Theorem 2.2.1. It is clear that the running time of the algorithm is polyno-

mial. Its correctness is based on the correctness of rec-mms. The latter can be proven

with strong induction on |K |, the number of still active agents that rec-mms receives as

input, under the assumption that (2.1) holds before each new call of rec-mms (which

we have established by Lemma 2.2.5). For |K | = 1, assuming that inequality (2.1)

holds, we have for agent 1 of K :

v1(S) = v1(M)− v1(M S) ≥ nµ1(n, M)− (n −1)ρnµ1(n, M)

≥µ1(n, M) ≥
(

2

3
−ε

)
µ1(n, M).

For the inductive step, Lemma 2.2.5 and the choice of X +
are crucial. Consider

an execution of rec-mms during which some agents will receive a subset of items and

the rest will form the set X +
to be handled recursively. For all the agents in X +

–if

26 Chapter 2. Computing Maximin Share Allocations

any– we are guaranteed
(2

3 −ε)-approximate shares by property (iii) of Lemma 2.2.5

and by the inductive hypothesis. On the other hand, for each agent i that receives a

subset S j of items in line 7, we have

vi (S j) ≥ (1−ε′)ρnξi ≥ (1−ε′)2ρnµi (n, M) > (1−2ε′)
2

3
µi (n, M) =

(
2

3
−ε

)
µi (n, M) ,

where the first inequality holds because (i , j) ∈ E(G).

In Figure 2.1, we give a simple snapshot to illustrate a recursive call of rec-mms.

In particular, in Subfigure 2.1(a), we see a bipartite graph G that could be the current

configuration for rec-mms, along with a maximum matching. In Subfigure 2.1(b), we

see the construction of G ′
, as described in Lemma 2.2.5, and the set X +

. The bold

(black) edges in G ′
signify that both directions are present. The set X +

consists then of

Xu and all other vertices of X reachable from Xu. Finally, Subfigure 2.1(b) also shows

the set of agents that are satisfied in the current call along with the corresponding

perfect matching, as claimed in Lemma 2.2.5.

(a) The graph G defined in line

5 of Algorithm 4 shown with a

maximum matching (blue edges).

Agent 1 is the top vertex of X .

(b) The graph G ′
defined in the proof of Lemma 2.2.5, where

for clarity, agent 1 and his edges are grayed out. The black

edges signify that both directions are present, i.e., they cor-

respond to pairs of anti-parallel edges. On the right we show

the actual allocation resulting from G.

Figure 2.1: Ilustration of G, G ′
and X +

.

We note that the analysis of the algorithm is tight, given the analysis on ρn (see

Section 3.3 of Procaccia and Wang (2014)). Improving further on the approximation

ratio of 2/3 seems to require drastically new ideas and it is a challenging open problem.

We stress that even a PTAS is not currently ruled out by the lower bound constructions

(Kurokawa, Procaccia, and Wang, 2016; Procaccia and Wang, 2014). Related to this,

in the next section we consider two special cases in which we can obtain better

positive results.

2.3. Two Special Cases 27

2.3 Two Special Cases

In this section, we consider two interesting special cases, where we have improved ap-

proximations. The first is the case of n = 3 agents, where we obtain a 7/8-approximation,

improving on the 3/4-approximation of Procaccia and Wang (2014). The second is the

case where all values for the goods belong to {0,1,2}. This is an extension of the {0,1}

setting discussed in Bouveret and Lemaître (2016), and we show how to get an exact

allocation without any approximation loss.

2.3.1 The Case of Three Agents

For n = 2, it is pointed out in Bouveret and Lemaître (2016) that maximin share alloca-

tions exist via an analog of the cut and choose protocol. Using the PTAS of Woeginger

(1997), we can then have a (1−ε)-approximation in polynomial time. In contrast, as

soon as we move to n = 3, things become more interesting. It is proven that with 3

agents there exist instances where no maximin share allocation exists (Procaccia and

Wang, 2014). The best known approximation guarantee is
3
4 by observing that the

quantity ρn, defined in Section 2.2, satisfies ρ3 ≥ 3
4 .

We provide a different algorithm, improving the approximation to
7
8 −ε. To do this,

we combine ideas from both algorithms presented so far in Sections 2.1 and 2.2. The

main result of this subsection is as follows:

Theorem 2.3.1. Let N = {1,2,3} be a set of three agents with additive valuations, and

let M be a set of goods. For any constant ε > 0, Algorithm 5 produces in polynomial

time an allocation (S1,S2,S3), such that

vi (Si) ≥
(

7

8
−ε

)
µi (3, M) , ∀i ∈ N .

The algorithm is shown below. Before we prove Theorem 2.3.1, we provide here a

brief outline of how the algorithm works.

Algorithm Outline: First, approximate values for the µi s are calculated as before.

Then, if there are items with large value to some agent, in analogy to Algorithm 2,

we first allocate one of those reducing this way the problem to the simple case of

n = 2. If there are no items of large value, then the first agent partitions the items

as in Algorithm 4. In the case where this partition does not satisfy all three agents,

then the second agent repartitions two of the bundles of the first agent. Actually, she

tries two different such repartitions, and we show that at least one of them works

out. The definition of a bipartite preference graph and a corresponding matching (as

in Algorithm 4) is never mentioned explicitly here. However, the main idea (and the

difference with Algorithm 4) is that if there are several ways to pick a perfect matching

between X X +
and a subset of Y Γ(X +), then we try them all and choose the best one.

Of course, since n = 3, if there is no perfect matching in the preference graph, then

X X +
is going to be just a single vertex, and we only have to examine two possible

perfect matchings between X X +
and a subset of Y Γ(X +).

28 Chapter 2. Computing Maximin Share Allocations

ALGORITHM 5: apx-3-mms(ε, M , v1, v2, v3)

1 ε′ = 8
7ε

2 Compute a (1−ε)-approximation ξi of µi (3, M) for i ∈ {1,2,3}.

3 if ∃i ∈ {1,2,3}, j ∈ M such that vi j ≥ 7
8ξi then

4 Give item j to agent i and divide M { j } among the other two agents in a

“cut-and-choose" fashion.

5 else

6 Agent 1 computes a (1−ε)-approximate maximin partition of M into three sets, say

(A1, A2, A3).

7 if ∃ j2, j3 ∈ {1,2,3} such that j2 6= j3, v2(A j2) ≥ 7
8ξ2 and v3(A j3) ≥ 7

8ξ3 then

8 Give set A j2 to agent 2, set A j3 to agent 3, and the last set to agent 1.

9 else

10 There are two sets that have value less than
7
8ξ2 w.r.t. agent 2, say for

simplicity A2 and A3.

11 Agent 2 computes (1−ε′)-approximate 2-maximin partitions of A1 ∪ A2 and

A1 ∪ A3, say (B1,B2) and (B ′
1,B ′

2) respectively, and discards the partition with

the smallest maximin value. Let (D1,D2) be the partition he keeps.

12 Agent 3 takes the set he prefers from (D1,D2); agent 2 gets the other, and agent

1 gets M (D1 ∪D2).

Proof of Theorem 2.3.1. First, note that for constant ε the algorithm runs in time

polynomial in |M |. Next, we prove the correctness of the algorithm.

If the output is computed in lines 3-4 then for agent i , as defined in line 3, the

value he receives is at least
7
8ξi ≥ 7

8 (1−ε)µi (3, M) > (7
8 −ε

)
µi (3, M). The remaining two

agents i1, i2 essentially apply an approximate version of a cut and choose protocol.

Agent i1 computes a (1−ε)-approximate 2-maximin partition of M { j }, say (C1,C2),

then agent i2 takes the set he prefers among C1 and C2, and agent i1 gets the other.

By the monotonicity lemma (Lemma 2.1.4), we know that µi1
(2, M { j }) ≥ µi1

(3, M),

and thus no matter which set is left for agent i1, he is guaranteed a total value of at

least (1−ε)µi1
(3, M) > (7

8 −ε
)
µi1

(3, M). Similarly, we have µi2
(2, M { j }) ≥µi2

(3, M), and

therefore vi2 (M { j }) ≥ 2µi2
(3, M). Since i2 chooses before i1, he is guaranteed a total

value that is at least µi2
(3, M) > (7

8 −ε
)
µi2

(3, M).

If the output is computed in lines 6-8 then clearly all agents receive a (7/8−ε)-
approximation, since for agent 1 it does not matter which of the Ai s he gets.

The most challenging case is when the output is computed in lines 10-12 (starting

with the partition from line 6). Then, as before, agent 1 receives a value that is at

least a (7/8−ε)-approximation no matter which of the three sets he gets. For agents

2 and 3, however, the analysis is not straightforward. We need the following lemma.

Lemma 2.3.2. Let N , M ,ε be as above, such that for all j ∈ M we have v2 j < 7
8ξ2.

Consider any partition of M into 3 sets A1, A2, A3 and assume that there are no j2, j3 ∈
{1,2,3} such that j2 6= j3, v2(A j2) ≥ 7

8ξ2 and v3(A j3) ≥ 7
8ξ3. Then lines 10-12 of Algorithm

5 produce an allocation (S2,S3) for agents 2 and 3, such that for i ∈ {2,3}: vi (Si) ≥(7
8 −ε

)
µi (3, M). Moreover, if agent 1 is given set Ak , then S2 ∪S3 =⋃

`∈N k A`.

Clearly, Lemma 2.3.2 completes the proof.

2.3. Two Special Cases 29

Before stating the proof of Lemma 2.3.2, we should mention how it is possible to

go beyond the previously known
3
4 -approximation. As noted above, ρn is by definition

the best guarantee we can get, based only on the fact that the complement of the set

left to be shared is not too large. As a result, the
7
8 ratio cannot be guaranteed just

by the excess value. Instead, in addition to making sure that the remaining items are

valuable enough for the remaining agents, we further argue about how a maximin

partition would distribute those items.

There is an alternative interpretation of Algorithm 5 in terms of Algorithm 3.

Whenever only a single agent (i.e., agent 1) is going to become satisfied in the first

recursive call, we try all possible maximum matchings of the graph G for the calcu-

lation of X +
. Then we proceed with the “best” such matching. Here, for n = 3, this

means we only have to consider two possibilities for the set agent 1 is going to get

matched to; it is either A2 or A3 (subject to the assumptions in Algorithm 5).

Proof of Lemma 2.3.2. First, recall that v2(M) ≥ 3µ2(3, M) ≥ 3ξ2. Like in the descrip-

tion of the algorithm we may assume that agent 1 gets set A3, without loss of gen-

erality. Before we move to the analysis we should lay down some facts. Let (B1,B2)

be agent 2’s (1− ε′)-approximate maximin partition of A1 ∪ A2 computed in line 11;

similarly (B ′
1,B ′

2) is agent 2’s (1− ε′)-approximate maximin partition of A1 ∪ A3. We

may assume that v2(B1) ≥ v2(B2). Also, assume that in line 11 of the algorithm

we have (D1,D2) = (B1,B2), i.e., min{v2(B ′
1), v2(B ′

2)} ≤ v2(B2) and M (D1 ∪D2) = A3.

The case where (D1,D2) = (B ′
1,B ′

2) is symmetric. Our goal is to show that v2(B2) ≥(7
8 −ε

)
µ2(3, M). For simplicity, we write µ2 instead of µ2(3, M).

Note, towards a contradiction, that

v2(B2) <
(

7

8
−ε

)
µ2 ⇒

(1−ε′)µ2(2, A1 ∪ A2) <
(

7

8
−ε

)
µ2 ⇒

(1−ε′)µ2(2, A1 ∪ A2) <
(

7

8
− 7

8
ε′

)
µ2 ⇒

µ2(2, A1 ∪ A2) < 7

8
µ2 .

Moreover, this means min{v2(B ′
1), v2(B ′

2)} < (7
8 −ε

)
µ2 as well, which leads toµ2(2, A1∪

A3) < 7
8µ2. So, it suffices to show that either µ2(2, A1 ∪ A2) or µ2(2, A1 ∪ A3) is at least

7
8µ2. This statement is independent of the Bi s and in what follows we consider exact

maximin partitions with respect to agent 2. Before we proceed, we should make clear

that for the case we are analyzing there are indeed exactly two sets in {A1, A2, A3}

each with value less than
7
8µ2 with respect to agent 2, as claimed in line 10 of the

algorithm. Indeed, notice that in any partition of M there is at least one set with

value at least µ2 with respect to agent 2, due to the fact that v2(M) ≥ 3µ2 and by the

definition of a maximin partition. If, however, there were at least 2 sets in {A1, A2, A3}

with value at least
7
8ξ2, then we would be at the case handled in steps 6-8. Hence,

30 Chapter 2. Computing Maximin Share Allocations

there will be exactly two sets each with value less than
7
8ξ2 ≤ 7

8µ2 for agent 2 and as

stated in the algorithm we assume these are the sets A2, A3.

Consider a 3-maximin share allocation (A′
1, A′

2, A′
3) of M with respect to agent

2. Let Fi = A′
i ∩ A3 for i = 1,2,3. Without loss of generality, we may assume that

v2(F1) ≤ v2(F2) ≤ v2(F3).

If v2(F1) ≤ 1
8µ2, then the partition (A′

1 A3, (A′
2 ∪ A′

3) A3) is a partition of A1 ∪ A2

such that

v2(A′
1 A3) = v2(A′

1)− v2(F1) ≥µ2 −
1

8
µ2 =

7

8
µ2

and

v2((A′
2 ∪ A′

3) A3) ≥ v2(A′
2)+ v2(A′

3)− v2(A3) ≥ 2µ2 −
7

8
µ2 =

9

8
µ2 .

So, in this case we conclude that µ2(2, A1 ∪ A2) ≥ 7
8µ2.

On the other hand, if v2(F1) > 1
8µ2 we are going to show that µ2(2, A1 ∪ A3) ≥ 7

8µ2.

Towards this we consider a 2-maximin share allocation (C1,C2) of A1 with respect to

agent 2 and let us assume that v2(C1) ≥ v2(C2). For a rough depiction of the different

sets involved in the following arguments, see Figure 2.2.

Figure 2.2: Assuming that the set of items M is represented by a rectangle, here is a

depiction of several sets involved in the proof of Lemma 2.3.2. Recall that (A1, A2, A3)
and (A′

1, A′
2, A′

3) are partitions of M , (C1,C2) is a partition of A1, and Fi = A′
i ∩ A3 for

i = 1,2,3.

Claim 2.3.3. For C1,C2, A3,F1,F2,F3 as above, we have

(i) v2(A3)+ v2(C2) ≥ 7
8µ2, and

(ii) v2(F1)+ v2(F2)+ v2(C1) > 7
8µ2.

Proof of Claim 2.3.3. Note that

v2(C1)+ v2(C2)+ v2(A3) = v2(M)− v2(A2) > 3µ2 −
7

8
µ2 =

17

8
µ2 .

If v2(A3)+ v2(C2) < 7
8µ2 then v2(C1) > 10

8 µ2. Moreover,

v2(A3) = v2(F1)+ v2(F2)+ v2(F3) ≥ 3v2(F1) > 3

8
µ2 ,

so v2(A3)+ v2(C2) < 7
8µ2 implies that v2(C2) < 4

8µ2.

2.3. Two Special Cases 31

Let d denote the difference v2(C1)− v2(C2); clearly d > 6
8µ2. It is not hard to see

that min j∈C1 v2 j ≥ d . Indeed, suppose there existed some j ∈ C1 such that v2 j < d .

Then, by moving j from C1 to C2 we increase the minimum value of the partition,

which contradicts the choice of (C1,C2).

Since v2(C1) > 10
8 µ2 and no item has value more than

7
8µ2 for agent 2, this means

that C1 contains at least two items. Thus, v2(C1) ≥ min j∈C1 v2 j > 12
8 µ2.

Now, for any item g ∈ argmin j∈C1
v2 j , the partition ({g }, A1 {g }) is strictly better

than (C1,C2), since v2g > 6
8µ2 > v2(C2) and v2(A1 {g }) = v2(A1)− v2g ≥ v2(C1)− v2g >

12
8 µ2 − 6

8µ2 = 6
8µ2 > v2(C2). Again, this contradicts the choice of (C1,C2). Hence, it

must be that v2(A3)+ v2(C2) ≥ 7
8µ2.

The proof of (ii) is simpler. Notice that

v2(F1)+ v2(F2)+ v2(C1) ≥ v2(F1)+ v2(F1)+ 1

2
v2(A1)

> 1

8
µ2 +

1

8
µ2 +

1

2

(
3µ2 −

7

8
µ2 −

7

8
µ2

)= 7

8
µ2 . �

Now, if v2(C1) ≥ 7
8µ2 then (i) of Claim 2.3.3 implies that min{v2(C1), v2(A3 ∪C2)} ≥

7
8µ2. Similarly, if v2(F3)+v2(C2) ≥ 7

8µ2 then (ii) of Claim 2.3.3 implies that min{v2(F1∪
F2 ∪C1), v2(F3 ∪C2)} ≥ 7

8µ2. In both cases, we have µ2(2, A1 ∪ A3) ≥ 7
8µ2. So, it is left to

examine the case where both v2(C1) and v2(F3)+ v2(C2) are less than
7
8µ2.

Claim 2.3.4. Let C1,C2, A3,F1,F2,F3 be as above and max{v2(C1), v2(F3 ∪C2)} < 7
8µ2.

Then min{v2(F1 ∪C1), v2(F2 ∪F3 ∪C2)} ≥ 7
8µ2.

Proof of Claim 2.3.4. Recall that v2(A1)+ v2(A3) > 17
8 µ2. Suppose v2(F1 ∪C1) < 7

8µ2.

Then v2(F2 ∪F3 ∪C2) > 10
8 µ2. Since v2(F3 ∪C2) < 7

8µ2 we have v2(F2) > 3
8µ2. But then

we get the contradiction

7

8
µ2 > v2(A3) = v2(F1)+ v2(F2)+ v2(F3) ≥ 1

8
µ2 +

3

8
µ2 +

3

8
µ2 =

7

8
µ2 .

Hence, v2(F1 ∪C1) ≥ 7
8µ2. Similarly, suppose v2(F2 ∪F3 ∪C2) < 7

8µ2. Then v2(F1 ∪C1) >
10
8 µ2. Since v2(C1) < 7

8µ2 we have v2(F1) > 3
8µ2. Then we get the contradiction

7

8
µ2 > v2(A3) = v2(F1)+ v2(F2)+ v2(F3) ≥ 3

8
µ2 +

3

8
µ2 +

3

8
µ2 =

9

8
µ2 .

Hence, v2(F2 ∪F3 ∪C2) ≥ 7
8µ2. �

Claim 2.3.4 implies µ2(2, A1 ∪ A3) ≥ 7
8µ2 and this concludes the proof.

2.3.2 Values in {0, 1, 2}

Bouveret and Lemaître (2016) consider a binary setting where all valuation functions

take values in {0,1}, i.e., for each i ∈ N , and j ∈ M , vi j ∈ {0,1}. This can correspond to

expressing approval or disapproval for each item. It is then shown that it is always

possible to find a maximin share allocation in polynomial time. In fact, they show

32 Chapter 2. Computing Maximin Share Allocations

that the Greedy Round-Robin algorithm, presented in Section 2.1, computes such an

allocation in this case.

Here, we extend this result to the setting where each vi j is in {0,1,2}, allowing the

agents to express two types of approval for the items. Enlarging the set of possible

values from {0,1} to {0,1,2} by just one extra possible value makes the problem signif-

icantly more complex. Greedy Round-Robin does not work in this case, so a different

algorithm is developed.

Theorem 2.3.5. Let N = [n] be a set of agents and M = [m] be a set of items. If for any

i ∈ N , agent i has a valuation function vi such that vi j ∈ {0,1,2} for any j ∈ M , then we

can find, in time O(nm logm), an allocation (T1, . . . ,Tn) of M so that vi (Ti) ≥µi (n, M) for

every i ∈ [n].

To design our algorithm, we make use of an important observation by Bouveret

and Lemaître (2016) that allows us to reduce appropriately the space of valuation

functions that we are interested in. We say that the agents have fully correlated

valuation functions if they agree on a common ranking of the items in decreasing

order of values. That is, ∀i ∈ N , if M = {1,2, ...,m}, we have vi 1 ≥ vi 2 ≥ . . . ≥ vi m.

Bouveret and Lemaître (2016) show that to find a maximin share allocation for any

set of valuation functions, it suffices to do so in an instance where the valuation

functions are fully correlated. This family of instances seems to be the difficulty in

computing such allocations. Actually, their result preserves approximation ratios

as well (with the same proof); hence we state this stronger version. For a valuation

function vi let σi be a permutation on the items such that vi (σi (j)) ≥ vi (σi (j +1)) for

j ∈ {1, . . . ,m−1}. We denote the function vi (σi (·)) by v ↑
i . Note that v ↑

1, v ↑
2, . . . , v ↑

n are now

fully correlated.

Theorem 2.3.6 (Bouveret and Lemaître (2016)). Let N = [n] be a set of agents with

additive valuation functions, M = [m] be a set of goods and ρ ∈ (0,1]. Given an allocation

(T1, . . . ,Tn) of M so that v ↑
i (Ti) ≥ ρµi (n, M) for every i , one can produce in linear time an

allocation (T ′
1, . . . ,T ′

n) of M so that vi (T ′
i) ≥ ρµi (n, M) for every i .

We are ready to state a high level description of our algorithm. The detailed

description, however, is deferred to the end of this subsection. The reason for this

is that the terminology needed is gradually introduced through a series of lemmata

motivating the idea behind the algorithm and proving its correctness. In fact, the

remainder of the subsection is the proof of Theorem 2.3.5. Algorithm 6 in the end

summarizes all the steps.

Algorithm Outline: We first construct v ↑
1, v ↑

2, . . . , v ↑
n and work with them instead. The

Greedy Round-Robin algorithm may not directly work, but we partition the items in

a similar fashion, although without giving them to the agents. Then, we show that

it is possible to choose some subsets of items and redistribute them in a way that

guarantees that everyone can get a bundle of items with enough value. At a higher

level, we could say that the algorithm simulates a variant of the Greedy Round-Robin,

2.3. Two Special Cases 33

where for an appropriately selected set of rounds the agents choose in the reverse

order. Finally, a maximin share allocation can be obtained for the original vi s, as

described in Bouveret and Lemaître (2016).

Proof of Theorem 2.3.5. According to Theorem 2.3.6 it suffices to focus on instances

where the valuation functions take values in {0,1,2} and are fully correlated. Given

such an instance we distribute the m objects into n buckets in decreasing order, i.e.,

bucket i will get items i ,n + i ,2n + i , . . . Notice that this is compatible with how the

Greedy Round-Robin algorithm could distribute the items; however, we do not assign

any buckets to any agents yet. We may assume that m = kn for some k ∈N; if not,

we just add a few extra items with 0 value to everyone. It is convenient to picture the

collection of buckets as the matrix

B =

(k −1)n +1 (k −1)n +2 · · · kn

.

.

.
.
.
.

. . .
.
.
.

n +1 n +2 · · · 2n

1 2 · · · n

 ,

since our algorithm will systematically redistribute groups of items corresponding to

rows of B .

Before we state the algorithm, we establish some properties regarding these buck-

ets and the way each agent views the values of these bundles. First, we introduce

some terminology.

Definition 2.3.7. We say that agent i is

• satisfied with respect to the current buckets, if all the buckets have value at

least µi (n, M) according to vi .

• left-satisfied with respect to the current buckets, if he is not satisfied, but at

least the n/2 leftmost buckets have value at least µi (n, M) according to vi .

• right-satisfied if the same as above hold, but for the rightmost n/2 buckets.

Now suppose that we see agent i ’s view of the values in the buckets. A typical

view would have the following form (recall the goods are ranked from highest to lowest

value):

0 0 0 0 0 0 · · · 0 0 0

· · · · · · · · · · · ·
1 1 1 1 1 0 · · · 0 0 0

· · · · · · · · · · · ·
1 1 1 1 1 1 · · · 1 1 1

2 2 2 1 1 1 · · · 1 1 1

· · · · · · · · · · · ·
2 2 2 2 2 2 · · · 2 2 2

A row that has only 2s for i will be called a 2-row for i . A row that has both 2s and

1s will be called a 2/1-row for i , and so forth. An agent can also have a 2/1/0-row. It

34 Chapter 2. Computing Maximin Share Allocations

is not necessary, of course, that an agent will have all possible types of rows in his

view. Note, however, that there can be at most one 1/0-row and at most one 2/1-row in

her view. We first prove the following lemma for agents that are not initially satisfied.

Lemma 2.3.8. Any agent not satisfied with respect to the initial buckets must have

both a 1/0-row and a 2/1-row in his view of B . Moreover, initially all agents are either

satisfied or left-satisfied.

Proof of Lemma 2.3.8. Let us focus on the multiset of values of an agent that is not

satisfied, say i . It is straightforward to see that if i has no 1s, or the number of 2s is

a multiple of n (including 0), then agent i gets value µi (n, M) from any bucket. So,

i must have a row with both 2s and 1s. If this is a 2/1/0-row, then again it is easy to

see that the initial allocation is a maximin share allocation for i . So, i has a 2/1-row.

The only case where he does not have a 1/0-row is if the total number of 1s and 2s is

a multiple of n.But then the maximum and the minimum value of the initial buckets

differ by 1, hence we have a maximin share allocation and i is satisfied.

Next we show that an agent i who is not initially satisfied is left-satisfied. In what

follows we only refer to i ’s view. Buckets B1 and Bn, indexed by the corresponding

columns of B , have maximum and minimum total value respectively. Since i is not

satisfied, we have vi (B1) ≥ vi (Bn)+2, but the way we distributed the items guarantees

that the difference between any two buckets is at most the largest value of an item; so

vi (B1) = vi (Bn)+2. Moreover, since vi (M) ≥ nµi (n, M) and vi (Bn) <µi (n, M), we must

have vi (B1) >µi (n, M) . This implies that vi (B1) =µi (n, M)+1 and vi (Bn) =µi (n, M)−1.

More generally, we have buckets of value µi (n, M)+1 (leftmost columns), we have

buckets of value µi (n, M)−1 (rightmost columns), and maybe some other buckets of

value µi (n, M) (columns in the middle). We know that the total value of all the items

is at least nµi (n, M), so, by summing up the values of the buckets, we conclude that

there must be at most n/2 buckets of value µi (n, M)−1. Therefore i is left-satisfied. �

So far we may have some agents that could take any bucket and some agents that

would take any of the n/2 (at least) first buckets. Clearly, if the left-satisfied agents

are at most n/2 then we can easily find a maximin share allocation. However, there

is no guarantee that there are not too many left-satisfied agents initially, so we try

to fix this by reversing some of the rows of B . To make this precise, we say that we

reverse the i th row of B when we take items (i −1)n +1,(i −1)n +2, . . . , i n and we put

item i n in bucket 1, item i n −1 in bucket 2, etc.

The algorithm then proceeds by picking a subset of rows of B and reversing them.

The rows are chosen appropriately so that the resulting buckets (i.e., the columns of

B) can be easily paired with the agents to get a maximin share allocation. First, it is

crucial to understand the effect that the reversal of a set of rows has to an agent.

Lemma 2.3.9. Any agent satisfied with respect to the initial buckets remains satisfied

independently of the rows of B that we may reverse. On the other hand, any agent

not satisfied with respect to the initial buckets, say agent i , is affected if we reverse

2.3. Two Special Cases 35

her 1/0-row or her 2/1-row. If we reverse only one of those, then i becomes satisfied

with respect to the new buckets; if we reverse both, then i becomes right-satisfied. The

reversal of any other rows is irrelevant to agent i .

Proof of Lemma 2.3.9. Fix an agent i . First notice that, due to symmetry, reversing

any row that for i is a 2-row, a 1-row, or a 0-row does not improve or worsen the initial

allocation from i ’s point of view. Also, clearly, reversing both the 1/0-row and the

2/1-row of a left-satisfied agent makes him right-satisfied. Similarly, if i is satisfied

and has a 2/1/0-row, or has a 2/1-row but no 1/0-row, or has a 1/0-row but no 2/1-row,

then reversing those keeps i satisfied.

The interesting case is when i has both a 1/0-row and a 2/1-row. If i is satisfied,

then even removing her 1/0-row leaves all the buckets with at least as much value

as the last bucket; so reversing it keeps i satisfied. A similar argument holds for i ’s

2/1-row as well. If i is not satisfied, then the difference of the values of the first and

the last bucket will be 2. Like in the proof of Lemma 2.3.8, the number of columns

that have 1 in i ’s 1/0-row and 2 in i ’s 2/1-row (i.e., total value µi (n, M)+1) are at least

as many as the columns that have 0 in i ’s 1/0-row and 1 in i ’s 2/1-row (i.e., total value

µi (n, M)− 1). So, by reversing her 1/0-row, the values of all the “worst” (rightmost)

buckets increase by 1, the values of some of the “best” (leftmost) buckets decrease by

1, and the values of the buckets in the middle either remain the same or increase by

1. The difference between the best and the worst buckets now is 1 (at most), so this

is a maximin share allocation for i and he becomes satisfied. Due to symmetry, the

same holds for reversing i ’s 2/1-row only. �

Now, what Lemma 2.3.9 guarantees is that when we reverse some of the rows of

the initial B , we are left with agents that are either satisfied, left-satisfied, or right-

satisfied. If the rows are chosen so that there are at most n/2 left-satisfied and at

most n/2 right-satisfied agents, then there is an obvious maximin share allocation:

to any left-satisfied agent we arbitrarily give one of the first n/2 buckets, to any right-

satisfied agent we arbitrarily give one of the last n/2 buckets, and to each of the

remaining agents we arbitrarily give one of the remaining buckets. In Lemma 2.3.10

below, we prove that it is easy to find which rows to reverse to achieve that.

We use a graph theoretic formulation of the problem for clarity. With respect to

the initial buckets, we define a graph G = (V ,E) with V = [k], i.e., G has a vertex for

each row of B . Also, for each left-satisfied agent i , G has an edge connecting i ’s

1/0-row and 2/1-row. We delete, if necessary, any multiple edges to get a simple graph

with n edges at most. We want to color the vertices of G with two colors, “red” (for

reversed rows) and “blue” (for non reversed), so that the number of edges having both

endpoints red is at most n/2 and at the same time the number of edges having both

endpoints blue is at most n/2. Note that if we reverse the rows that correspond to red

vertices, then the agents with red endpoints become right-satisfied, the agents with

blue endpoints remain left-satisfied and the agents with both colors become satisfied.

36 Chapter 2. Computing Maximin Share Allocations

Moreover, the initially satisfied agents are not affected, and we can find a maximin

share allocation as previously discussed. This is illustrated in Figure 2.3 below.

Figure 2.3: Assuming an instance with 3 agents and 11 items, the tables on top are

the three different views on the initial buckets. This results in the graph shown in

the middle—before and after the coloring. By reversing row c that corresponds to a

red vertex, every agent becomes satisfied and thus any matching of the columns to

the agents defines an MMS allocation.

Lemma 2.3.10. Given graph G defined above, in time O(k+n) we can color the vertices

with two colors, red and blue, so that the number of edges with two red endpoints is

less than n/2 and the number of edges with two blue endpoints is at most n/2.

Proof of Lemma 2.3.10. lor vertices red, one at a time, until the number of edges with

two blue endpoints becomes at most |E |/2 for the first time. Assume this happens

after recoloring vertex u. Before turning u from blue to red, the number of edges

with at most one blue endpoint was strictly less than |E |/2. Also, the recoloring of

u did not force any of the edges with two blue endpoints to become edges with two

red endpoints. So, the number of edges with two red endpoints after the recoloring

of u is at most equal to the number of edges with at most one blue endpoint before

the recoloring of u, i.e., less than |E |/2. To complete the proof, notice that |E | ≤ n.

For the running time, notice that each vertex changes color at most once and when

this happens we only need to examine the adjacent vertices in order to update the

counters on each type of edges (only red, only blue, or both). �

Lemma 2.3.10 completes the proof of correctness for Algorithm 6 that is sum-

marized below. For the running time notice that v ↑
1, . . . , v ↑

n can be computed in

O(nm logm), since we get v ↑
i by sorting vi 1, . . . , vi m. Also step 5 can be computed

in O(nm); for each agent i we scan the first column of B to find his (possible) 1/0-row

2.4. A Probabilistic Analysis 37

and 2/1-row, and then in O(n) we check whether he is left-satisfied by checking that

the positions that have 1 in i ’s 1/0-row and 2 in i ’s 2/1-row are at least as many as the

positions that have 0 in i ’s 1/0-row and 1 in i ’s 2/1-row.

ALGORITHM 6: exact-mms0,1,2(m, v1, . . . , vn)

1 Let k = dm
n e. Add kn −m dummy items with value 0 for everyone.

2 if v1, . . . , vn are not fully correlated then

3 Compute v ↑
1, . . . , v ↑

n and use them instead.

4 Construct a k ×n matrix B so that Bi j is the (i −1)n + j th item.

5 Find the set of left-satisfied agents and their corresponding 1/0-rows and 2/1-rows.

6 Construct a graph G = ([k],E) with E = {{i , j }|∃ left-satisfied agent that i and j are her

1/0-row and 2/1-row}.

7 Color the vertices of G with two colors, red and blue, so that the number of edges

having both endpoints red, and the number of edges having both endpoints blue,

each is ≤ n/2.

8 Reverse the rows of B that correspond to red vertices, and keep track of who is

satisfied, left-satisfied, or right-satisfied.

9 Arbitrarily give some of the first n/2 buckets (columns of B) to each of the left-satisfied

agents and some of the last n/2 buckets to each of the right-satisfied agents.

Arbitrarily give the rest of the buckets to the satisfied agents.

10 if v ↑
1, . . . , v ↑

n were used then

11 Based on the allocation in step 9 compute and return a maximin share allocation

for the original vi s as described in Bouveret and Lemaître (2016).

12 else

13 Return the allocation in step 9.

2.4 A Probabilistic Analysis

As argued in the previous works (Bouveret and Lemaître, 2016; Procaccia and Wang,

2014), it has been quite challenging to prove impossibility results. Setting efficient

computation aside, what is the best ρ for which a ρ-approximate allocation does ex-

ist? All we know so far is that ρ 6= 1 by the elaborate constructions by Kurokawa,

Procaccia, and Wang (2016) and Procaccia and Wang (2014). However, extensive

experimentation by Bouveret and Lemaître (2016) (and also by Procaccia and Wang

(2014)), showed that in all generated instances, there always existed a maximin share

allocation. Motivated by these experimental observations and by the lack of impossi-

bility results, we present a probabilistic analysis, showing that indeed we expect that

in most cases there exist allocations where every agent receives his maximin share.

In particular, we analyze the Greedy Round-Robin algorithm from Section 2.1 when

each vi j is drawn from the uniform distribution over [0,1].

Recently, Kurokawa, Procaccia, and Wang (2016) show similar results for a large

set of distributions over [0,1], including U [0,1]. Although, asymptotically, their re-

sults yield a theorem that is more general than ours, we consider our analysis to be

38 Chapter 2. Computing Maximin Share Allocations

of independent interest, since we have much better bounds on the probabilities for

the special case of U [0,1], even for relatively small values of n.

For completeness, before stating and proving our results, we include the version

of Hoeffding’s inequality we are going to use.

Theorem 2.4.1 (Hoeffding (1963)). Let X1, X2, . . . , Xn be independent random variables

with Xi ∈ [0,1] for i ∈ [n]. Then for the empirical mean X̄ = 1
n (X1 + . . .+ Xn) we have

P
(
X̄ −E[X̄] ≥ t

)≤ exp(−2nt 2).

We start with Theorem 2.4.2. Its proof is based on tools like Hoeffding’s and

Chebyshev’s inequalities, and on a careful estimation of the probabilities when m <
3n. Note that for m ≥ 2n, the theorem provides an even stronger guarantee than the

maximin share (by Claim 2.1.1).

Theorem 2.4.2. Let N = [n] be a set of agents and M = [m] be a set of goods, and

assume that the vi j s are i.i.d. random variables that follow U [0,1]. Then, for m ≥ 2n

and large enough n, the Greedy Round-Robin algorithm allocates to each agent i a set

of goods of total value at least
1
n

∑m
j=1 vi j with probability 1− o(1). The o(1) term is

O(1/n) when m > 2n and O(logn/n) when m = 2n.

Proof. In what follows we assume that agent 1 chooses first, agent 2 chooses second,

and so forth. We consider several cases for the different ranges of m. We first assume

that 2n ≤ m < 3n.

It is illustrative to consider the case of m = 2n and examine the nth agent that

chooses last. Like all the agents in this case, he receives exactly two items; let Yn

be the total value of those items. From his perspective, he sees n +1 values chosen

uniformly from [0,1], picks the maximum of those, then u.a.r. n −1 of the rest are

removed, and he takes the last one as well. If we isolate this random experiment,

it is as if we take Yn = max{X1, ..., Xn+1} + XY , where Y ∼ U
(
{1,2, ...,n +1} {µ}

)
, µ ∈

argmax{X1, ..., Xn+1}, Xi ∼ U [0,1] ∀i ∈ [n + 1], and all the Xi s are independent. We

estimate now the probability P(Yn ≤ a) for 1 < a < 2. We will set a to a particular value

in this interval later on. In fact, we bound this probability using the corresponding

probability for Zn = max{X1, ..., Xn+1}+XY ′ , where Y ′ ∼U {1,2, ...,n +1}. For Zn we have

P(Zn ≤ a) =
n+1∑
i=1

∫ a

0
P

(
max

1≤ j≤n+1
X j ≤ t ∧Y = i ∧Xi ≤ a − t

)
d t

= (n +1)
∫ a

0
P

(
max

1≤ j≤n+1
X j ≤ t ∧Y = 1∧X1 ≤ a − t

)
d t

=
∫ a

0
P

(
max

1≤ j≤n+1
X j ≤ t ∧X1 ≤ a − t

)
d t

=
∫ a

0
P(X1 ≤ t ∧X1 ≤ a − t ∧X2 ≤ t ∧ . . .∧Xn+1 ≤ t)d t

=
∫ a/2

0
P(X1 ≤ t ∧X2 ≤ t ∧ . . .∧Xn+1 ≤ t)d t+

+
∫ 1

a/2
P(X1 ≤ a − t ∧X2 ≤ t ∧ . . .∧Xn+1 ≤ t)d t+

2.4. A Probabilistic Analysis 39

+
∫ a

1
P(X1 ≤ a − t ∧X2 ≤ t ∧ . . .∧Xn+1 ≤ t)d t

=
∫ a/2

0
t n+1d t +

∫ 1

a/2
(a − t)t nd t +

∫ a

1
(a − t)d t .

Also, by the definition of Y ′
we have P(Y ′ ∉ argmax{X1, ..., Xn+1}) = n/(n +1). Therefore,

for Yn we get

P(Yn ≤ a) = P(Zn ≤ a | Y ′ ∉ argmax{X1, ..., Xn+1})

= P(Zn ≤ a ∧ Y ′ ∉ argmax{X1, ..., Xn+1})

P(Y ′ ∉ argmax{X1, ..., Xn+1})

≤ P(Zn ≤ a)

P(Y ′ ∉ argmax{X1, ..., Xn+1})
= n +1

n
P(Zn ≤ a)

= n +1

n

(∫ a/2

0
t n+1d t +

∫ 1

a/2
(a − t)t nd t +

∫ a

1
(a − t)d t

)
,

where for the inequality we used the fact that P(A∩B) ≤ P(A) for any events A,B .

A similar analysis for the j th agent yields

P(Y j ≤ a) ≤ 2n − j +1

n

(∫ a/2

0
t 2n− j+1d t +

∫ 1

a/2
(a − t)n− j+1t nd t +

∫ a

1
(a − t)n− j+1d t

)
.

In the more general case where m = 2n+κ(n), 0 ≤ κ(n) < n, we have a similar calcula-

tion for the agents that receive only two items in the Greedy Round-Robin algorithm,

as well as for the first two items of the first κ(n) agents (who receive three items

each). Let Yi be the total value agent i receives, and Wi be the value of his first two

items. Of course, for the last 2n players, Yi = Wi . Also, recall that
∑m

j=1 vi j = vi (M).

We now relate the probability that we are interested in estimating, with the proba-

bilities P(Yi ≤ a) that we have already bounded. We will then proceed by setting α

appropriately. We have

P
(
∃i such that Yi < 1

n

m∑
j=1

vi j

)
≤

n∑
i=1

P

(
Yi < vi (M)

n

)
=

n∑
i=1

P

(
Yi < min

{ vi (M)

n
, a

}
∨ vi (M)

n
> max{Yi , a}

)
≤

n∑
i=1

P

(
Yi < min

{ vi (M)

n
, a

})
+

n∑
i=1

P

(
vi (M)

n
> max{Yi , a}

)
≤

n∑
i=1

P(Yi < a)+
n∑

i=1
P

(
vi (M)

n
> a

)
.

To upper bound the first sum we use the Wi s, i.e., we do not take into account the

third item that the first κ(n) agents receive. By the definition of Yi ,Wi , for these first

κ(n) agents we have P(Yi < a) ≤ P(Wi < a), while for the remaining agents we have

P(Yi < a) = P(Wi < a). Note that the bounds for P(Yi ≤ a) calculated above, here hold

for κ(n)+1 ≤ i ≤ n. For 1 ≤ i ≤ κ(n) the same bounds hold for P(Wi ≤ a).

n∑
i=1

P(Yi < a) ≤
κ(n)∑
i=1

P(Wi < a)+
n∑

i=κ(n)+1
P(Yi < a)

40 Chapter 2. Computing Maximin Share Allocations

≤
n∑

i=1

m−i+1
n

(∫ a/2

0
t m−i+1d t +

∫ 1

a/2
(a − t)n+κ(n)−i+1t nd t +

∫ a

1
(a − t)n+κ(n)−i+1d t

)
≤ 3

n∑
j=1

(∫ a/2

0
t n+κ(n)+ j d t +

∫ 1

a/2
(a − t)κ(n)+ j t nd t +

∫ a

1
(a − t)κ(n)+ j d t

)
= 3

(
n∑

j=1

(a/2)n+κ(n)+ j+1

n +κ(n)+ j +1
+

n∑
j=1

∫ 1

a/2
(a − t)κ(n)+ j t nd t +

n∑
j=1

∫ a−1

0
uκ(n)+ j du

)
.

We are going to bound each sum separately. We set a = 1+ κ(n)
2n +

√
3lnn

n = m
2n +√

3lnn
n . Note that for n ≥ 46 we have a ∈ (1,2). Consider the first sum:

n∑
j=1

(a/2)n+κ(n)+ j+1

n +κ(n)+ j +1
≤ (a/2)n+κ(n)+2

n +κ(n)+2

n−1∑
i=0

(a/2)i

< 1

n +κ(n)+2
· (a/2)n+κ(n)+2

1−a/2
=O(1/n) ,

where we got O(1/n) because the bound is at most
3
n for n ≥ 57 and for any value of

κ(n).

Next, we deal with the second sum:

n∑
j=1

∫ 1

a/2
(a − t)κ(n)+ j t nd t <

∫ 1

a/2
t n

(∞∑
j=0

(a − t)κ(n)+ j

)
d t ≤

∫ 1

a/2
t n(a/2)κ(n) 1

1−a + t
d t

≤ (a/2)κ(n)

1−a/2

∫ 1

a/2
t nd t = (a/2)κ(n)

1−a/2

(
1− (a/2)n+1

n +1

)
=O(1/n) .

Here, for n ≥ 58 the bound is at most
10
n for any κ(n).

Finally, for the third sum, we rewrite it as

n∑
j=1

∫ a−1

0
uκ(n)+ j du =

n∑
j=1

(a −1)κ(n)+ j+1

κ(n)+ j +1
=

n+κ(n)+1∑
i=κ(n)+2

(a −1)i

i
.

We are going to bound each term separately. Consider the case where κ(n) ≥ 5
p

n.

For n ≥ 64, it can be shown that
1
5

(
κ(n)
2n +

√
3lnn

n

)5
p

n
< 10

n3/2 . So,

n+κ(n)+1∑
i=κ(n)+2

(a −1)i

i
≤

n∑
i=1

(a −1)κ(n)

κ(n)
≤ n ·

(
κ(n)
2n +

√
3lnn

n

)5
p

n

5
p

n
≤ n · 10

n2 = 10

n
.

On the other hand, when κ(n) < 5
p

n, we have a − 1 < 2.5+p3lnnp
n

. For n ≥ 59 and

j ≥ 10 it can be shown that
1
j

(
2.5+p3lnnp

n

) j < 30
n2 . Of course, for 3 ≤ j ≤ 9 it is true

that
1
j

(
2.5+p3lnnp

n

) j = o(1/n), and particularly for n ≥ 59 the sum
∑9

i=3
1
j

(
2.5+p3lnnp

n

) j

is bounded by
25
n . In general, it is to be expected to have relatively large hidden

constants when m is very close to 2n. This changes quickly though; when κ(n) > 21

2.4. A Probabilistic Analysis 41

the whole sum is less than 1/n. In any case, if κ(n) > 0

n+κ(n)+1∑
i=κ(n)+2

(a −1)i

i
≤

n+2∑
i=3

(a −1)i

i
≤

9∑
i=3

1
i

(
2.5+p3lnnp

n

)i +
n+2∑
i=10

1
i

(
2.5+p3lnnp

n

)i ≤

≤O(1/n)+ (n −7)
30

n2 =O(1/n) .

However, if κ(n) = 0, we have

n+1∑
i=2

(a −1)i

i
=

(
2.5+p3lnnp

n

)2 +
n+1∑
i=3

(a −1)i

i
=O

(
logn

n

)
.

So far, we have
∑n

i=1 P(Yi < a) = O(1/n) (or O(logn/n) when m = 2n). In order to

complete the proof for this case we use Hoeffding’s inequality to bound the probability

that the average of the values for any agent is too large.

n∑
i=1

P

(
vi (M)

n
> a

)
≤ n ·P

(
v1(M)

n
> a

)
= n ·P

(
v1(M)

m
> n

m

(m

2n
+

√
3lnn

n

))
= n ·P

(
v1(M)

m
− 1

2
> n

m

√
3lnn

n

)
≤ n ·e

−2m
(

n
m

√
3lnn

n

)2

= n ·e−2 n
m ·3lnn ≤ n ·e−2lnn = 1

n
.

Hence,

P

(
∃i such that Yi < vi (M)

n

)
=

O
(

logn
n

)
if m = 2n

O
(

1
n

)
if 2n < m < 3n

.

The remaining cases are for m ≥ 3n. We give the proof for m ≥ 4n. The cases for

3n ≤ m < 3.5n and 3.5n ≤ m < 4n differ in small details but they essentially follow the

same analysis. We briefly discuss these cases at the end of the proof.

Assume that kn ≤ m < (k +1)n,k ≥ 4. We focus on the agent that choses last, i.e.,

agent n, who has the smallest expected value. He gets exactly k items, and like before

let Yn be the total value he receives. In order to bound P
(
Yn <β)

we introduce the

random variables Zn and Wn. Consider the following random experiment involving

the independent random variables X1, . . . , Xm−n+1, Xi ∼U [0,1] ∀i ∈ [m−n+1]. Given a

realization of the Xi s, i.e., some values x1, . . . , xm−n+1 in [0,1], Zn is defined similarly

to Yn:

• Initially, Zn = 0.

• While there are still xi s left, take the maximum of the remaining xi s, add it to

Zn, remove it from the available numbers, and then remove the xi s with the

n −1 highest indices.

• Return Zn.

On the other hand, Wn =∑k−1
i=1 X(m+1−i n,m−i (n−1)), where X(j ,t) is the j th order statistic

of X1, . . . , X t . That is, Wn is defined as the sum of the largest of all xi s, the second

largest of the first m−n+1 xi s, the third largest of the first m−2n+2 xi s, and so on.

42 Chapter 2. Computing Maximin Share Allocations

It is not hard to see that always Wn ≤ Zn (in fact, each term of Wn is less than or

equal to the corresponding term of Zn) and that Zn follows the same distribution as

Yn. So, P
(
Yn <β) = P

(
Zn <β) ≤ P

(
Wn <β)

. Using the fact that the i th order statistic

in a sample of size ` drawn independently from U [0,1] has expected value
i

`+1 and

variance
i (`−i+1)

(`+1)2(`+2) (Gentle, 2009), we get

E[Wn] = m −n +1

m −n +2
+ m −2n +1

m −2n +3
+ . . .+ m − (k −1)n +1

m − (k −1)n +k

≥ (k −1)n +1

(k −1)n +2
+ (k −2)n +1

(k −2)n +3
+ . . .+ n +1

n +k

> k −1− 1

(k −1)n
− 2

(k −2)n
− . . .− k −1

n
> k −1− (k −1)Hk−1

n
.

Moreover, if X ′
i = X(m+1−i n,m−i (n−1)) we have

σ2
Wn

= Var(Wn) =
k−1∑
i=1

k−1∑
j=1

Cov(Xi , X j) ≤
k−1∑
i=1

k−1∑
j=1

√
Var(Xi)Var(X j) ≤

(
k−1∑
i=1

√
Var(Xi)

)2

<
(

k−1∑
i=1

p
i

m − i n + i +1

)2

<
(p

k −1
k−1∑
i=1

1

(k − i)n

)2

= (k −1)H 2
k−1

n2 ,

where Hk−1 is the (k −1)-th harmonic number. Now we can bound the probability

that any agent receives value less than 1/n of his total value.

P

(
Yi < vi (M)

n

)
≤ P

(
Yn < vn(M)

n

)
≤ P

(
Yn < 13k

20

)
+P

(
vn(M)

n
> 13k

20

)
.

Next, using Chebyshev’s inequality we have

P

(
Yn < 13k

20

)
≤ P

(
Wn < 13k

20

)
= P

(
E[Wn]−Wn > E[Wn]− 13k

20

)
≤ P

(
|E[Wn]−Wn | > k −1− (k −1)Hk−1

n
− 13k

20

)

≤ P

|E[Wn]−Wn | >
7k
20 −1− (k−1)Hk−1

np
k−1Hk−1

n

σWn

≤ (k −1)H 2

k−1((
7k−20

20

)
n − (k −1)Hk−1

)2 .

On the other hand, using Hoeffding’s inequality,

P

(
vn(M)

n
> 13k

20

)
= P

(
vn(M)

m
− 1

2
> n

m

13k

20
− 1

2

)
≤ P

(
vn(M)

m
− 1

2
> 13k

20(k +1)
− 1

2

)
≤ e

−2m
(

3k−10
20(k+1)

)2

≤ e
−2kn

(
3k−10

20(k+1)

)2

.

2.4. A Probabilistic Analysis 43

Finally, we take a union bound to get

P

(
∃i s.t. Yi < vi (M)

n

)
≤

n∑
i=1

P

(
Yi < vi (M)

n

)
≤ n

(
(k−1)H 2

k−1((
7k−20

20

)
n−(k−1)Hk−1

)2 +e
−2kn

(
3k−10

20(k+1)

)2)
=O(1/n) .

The exact same proof works when 3n ≤ m < 3.5n, but instead of
3k−10

20(k+1) in Hoeffding’s

inequality, we have
3·3−5

20(3+0.5) and of course we should adjust E[Wn] and Var(Wn) ac-

cordingly. When 3.5n ≤ m < 4n on the other hand, we need to consider three items in

Wn instead of two, since two items are not enough anymore to guarantee separation

of Yi and
1
n

∑m
j=1 vi j with high probability. That said, the proof is the same, but we

should adjust E[Wn] and Var(Wn), and instead of
13k
20 = 39

20 we may choose 2.5.

We now state a similar result for any m, generalizing Theorem 2.4.2 that only

holds when m ≥ 2n. We use a modification of Greedy Round-Robin. While m < 2n,

the algorithm picks any agent uniformly at random and gives him only his “best”

item (phase 1). When the number of available items becomes two times the number

of active agents, the algorithm proceeds as usual (phase 2). We note that while for

m ≥ 2n Theorem 2.4.2 gives the stronger guarantee of
vi (M)

n for each agent i , here we

can only have a guarantee of µi (n, M).

Theorem 2.4.3. Let N = [n], M = [m], and the vi j s be as in Theorem 2.4.2. Then, for

any m and large enough n, the Modified Greedy Round-Robin algorithm allocates to

each agent i a set of items of total value at least µi (n, M) with probability 1−o(1). The

o(1) term is O(1/n) when m > 2n and O(logn/n) when m ≤ 2n.

Proof. If m ≥ 2n then this is a corollary of Theorem 2.4.2. When m < 2n, then for any

agent i we have max j {vi j } ≥ µi (n, M). So the first agent that receives only his most

valuable item has total value at least µi (n, M). If Na , Ma are the sets of remaining

agents and items respectively, after several agents were assigned one item in phase

1 of the algorithm, then by Lemma 2.1.4, for any agent i ∈ Na, we have µi (|Na |, Ma) ≥
µi (n, M). If |Ma | < 2|Na | it is also true that max j∈Ma vi j ≥µi (|Na |, Ma), so correctness

of phase 1 follows by induction. If |Ma | = 2|Na |, then by Theorem 2.4.2 phase 2

guarantees that with high probability each agent i ∈ Na will receive a set of items with

total value at least
1

|Na |vi (Ma) ≥µi (|Na |, Ma) ≥µi (n, M).

Remark 1. The implicit constants in the probability bounds of Theorems 2.4.2 and

2.4.3 depend heavily on n and m, as well as on the point one uses to separate Yi and

1
n

∑m
j=1 vi j in the proof of Theorem 2.4.2. Our analysis gives good bounds for the case

2n ≤ m < 3n without requiring very large values for n (especially when κ(n) in the proof

of Theorem 2.4.2 is not small). For example, if m = 2.4n an appropriate adjustment

of our bounds gives a o(1) term less than 1.7/n for n ≥ 41. When we switch from the

detailed analysis of the 2n ≤ m < 3n case to the sloppier general treatment for m ≥ 3n,

there is definitely some loss, e.g., for m = 4n we get that the o(1) term is less than

44 Chapter 2. Computing Maximin Share Allocations

130/n for n > 450. This is corrected relatively quickly as m grows, e.g., for m = 13n

the o(1) term can be made less than 8/n for n ≥ 59. One can significantly improve the

constants by breaking the interval kn ≤ m < (k +1)n into smaller intervals (not unlike

the 3n ≤ m < 3.5n case).

Theorems 2.4.2 and 2.4.3 may leave the impression that n has to be large. Ac-

tually, there is no reason why we cannot consider n fixed and let m grow. Following

closely the proof of Theorem 2.4.2 for m ≥ 4n, we get the next corollary. Notice that

now we can use E[Wn] ≥ 0.7k and σ2
Wn

< k.

Corollary 2.4.4. Let N = [n], M = [m], and the vi j s be as in Theorem 2.4.2. Then, for

fixed n and large enough m, the Greedy Round-Robin algorithm allocates to each agent

i a set of goods of total value at least
1
n

∑m
j=1 vi j with probability 1−O(1/m).

2.5 Directions for Future Research

The most interesting open question is undoubtedly whether one can improve on

the 2/3-approximation. Going beyond 2/3 seems to require a drastically different

approach. One idea that may deserve further exploration is to pick in each step of

Algorithm 4, the best out of all possible matchings (and not just an arbitrary matching

as is done in line 7 of the algorithm). This is essentially what we exploit for the special

case of n = 3 agents. However, for a larger number of agents, this seems to result

in a heavy case analysis without any visible benefits. In terms of non-combinatorial

techniques, we are not currently aware of any promising LP-based approach to the

problem.

Even establishing better ratios for special cases could still provide new insights

into the problem. It would be interesting, for example, to see if we can have an

improved ratio for the special case studied in Bansal and Sviridenko (2006) for the

Santa Claus problem. In this case of additive functions, the value of a good j takes

only two distinct values, 0 or v j . On the other hand, obtaining negative results seems

to be an even more challenging task, given our probabilistic analysis and the results of

related works. The negative results (Kurokawa, Procaccia, and Wang, 2016; Procaccia

and Wang, 2014) require very elaborate constructions, which still do not yield an

inapproximability factor far away from 1. Apart from improving the approximation

quality, exploring practical aspects of our algorithms is another direction (see, e.g.,

Spliddit, 2015).

Finally, we have not addressed here the issues of truthfulness and mechanism

design, a stimulating topic that is the focus of the next chapter.

45

Chapter 3

Truthful Allocation Mechanisms Without

Payments
1

The main result of this chapter is a characterization of deterministic truthful mech-

anisms that allocate all the items to two players with additive valuations. In doing

so, we identify some important allocation properties that every truthful mechanism

should satisfy. One such crucial property is the notion of controlling items (Definition

3.1.7); we say that a player controls an item, whenever it is possible to report values

that will guarantee him this item, regardless of the other player’s valuation function.

We show that truthfulness implies that every item is controlled by some player. Ex-

ploiting this property further, greatly helps us in understanding how a mechanism

operates. Consequently, our analysis and the characterization we eventually obtain

reveals an interesting structure underlying all truthful mechanisms; they can all be

essentially decomposed into two components: (i) a selection part where players pick

their best subset among prespecified choices determined by the mechanism, and (ii)

an exchange part where players are offered the chance to exchange certain subsets if

it is favorable to do so. Hence, we call them picking-exchange mechanisms.

Next, we apply our main result and derive several consequences on the design of

mechanisms with (approximate) fairness guarantees. We consider various notions of

fairness in Section 3.2, starting our discussion with the more standard ones such

as proportionality and envy-freeness, and explaining why such concepts cannot be

attained—even approximately—by truthful mechanisms. We then focus on more re-

cently studied relaxations of either envy-freeness or proportionality where positive

algorithmic results have been obtained (e.g., finding allocations that are envy-free up

to one item, or achieve approximate maximin share guarantees). For these notions,

we provide tight bounds on the approximation guarantees of truthful mechanisms,

settling some of the open problems in this area (Caragiannis et al., 2009; Amanatidis,

Birmpas, and Markakis, 2016b). Interestingly, our results also reveal that the best

truthful approximation algorithms for fair division are achieved by ordinal mecha-

nisms, i.e., mechanisms that exploit only the relative ranking of the items and not

the cardinal information of the valuation functions.

1
A conference paper containing the results of this chapter appeared in EC ’17 (Amanatidis et al.,

2017).

46 Chapter 3. Truthful Allocation Mechanisms Without Payments

The heart of our approach for obtaining lower bounds on the approximability of

fairness criteria, is a necessary condition for fairness in view of our notion of control,

which we call no control of pairs. It states that no player should control more than one

item. We show how this condition summarizes minimum requirements for various

fairness concepts previously studied in the literature. Although this condition does

not offer an alternative fairness criterion, it is a useful tool for showing lower bounds.

Finally, in Section 3.3 we provide a general class of truthful mechanisms for the

case of multiple players. This class generalizes picking-exchange mechanisms in a

non-trivial way. As indicated by our mechanisms, there is a much richer structure

in the case of multiple players. In particular, the notion of control does not convey

enough information anymore. Instead, there seem to exist several different levels of

control.

3.1 Characterization of Truthful Mechanisms

We present our main characterization result in this section. We start in subsection

3.1.1 with the main definitions and illustrating examples, and then we state our result

in subsection 3.1.2 along with a road map of the proof. To avoid repetition, when

referring to a truthful mechanism X , we mean a truthful mechanism for allocating

all the items in M to two players with additive valuation functions.

3.1.1 A Non-Dictatorial Class of Mechanisms

The main result of this section is that every truthful mechanism is a picking-exchange

mechanism (Theorem 3.1.6). Before we make a precise statement, we formally define

the types of mechanisms involved and provide illustrating examples.

Picking Mechanisms. We start with a family of mechanisms where players make

a selection out of choices that the mechanism offers to them. Given a subset S of

items, we define a set of offers O on S, as a nonempty collection of proper subsets of

S that exactly covers S (i.e.,
⋃

T∈O T = S), and in which there is no common element

that appears in all subsets (i.e.,
⋂

T∈O T =;).

Definition 3.1.1. A mechanism X is a picking mechanism
2

if there exists a partition

(N1, N2) of M , and sets of offers O1 and O2 on N1 and N2 respectively, such that for

every profile v,

Xi (v)∩Ni ∈ argmax
S∈Oi

vi (S).

Technical nuances aside, such a mechanism can be implemented by first letting

player 1 choose his best offer from O1 and giving what remains from N1 to player 2.

Then it lets player 2 choose his best offer from O2 and gives what remains from N2 to

player 1. The following example illustrates a picking mechanism.

2
Picking mechanisms are a generalization of truthful picking sequences for two players (see Bouveret

and Lang, 2014).

3.1. Characterization of Truthful Mechanisms 47

Example 2. Consider the following mechanism X on a set M = {1, . . .6}, which first

partitions M into N1 = {1,2,3,4}, N2 = {5,6} and then constructs the offer sets O1 =
{{1,2}, {2,3}, {4}},O2 = {{5}, {6}}. On input v, X first gives to player 1 his best set—with

respect to v1—among {1,2}, {2,3} and {4}, and then gives what remains from N1 to

player 2. Next, X gives to player 2 his best set—according to v2—among {5} and {6},

and then gives what remains from N2 to player 1. X resolves ties lexicographically,

e.g., in case of a tie, {1,2} is preferred to {4}.

It is not hard to see that X is truthful. For the following input v , the circles denote

the allocation.

v =
(

3 5 5 10 4 2

2 3 6 1 5 3

)
.

Exchange Mechanisms. We now move to a quite different class of mechanisms.

Let X ,Y be two disjoint subsets of M . We call the ordered pair (X ,Y) an exchange

deal. Moreover, we say that an exchange deal (X ,Y) is favorable with respect to v if

v1(Y) > v1(X) and v2(Y) < v2(X), while it is unfavorable with respect to v if v1(Y) < v1(X)

or v2(Y) > v2(X). Let S and T be two disjoint subsets of items and let S1,S2, . . . ,Sk

and T1, . . . ,Tk be two collections of nonempty and pairwise disjoint subsets of S and

T respectively. We say then that the set of exchange deals D = {(S1,T1), (S2,T2), . . . ,

(Sk ,Tk)} on (S,T) is valid.

Definition 3.1.2. A mechanism X is an exchange mechanism
3

if there exists a parti-

tion (E1,E2) of M , and a valid set of exchange deals D = {(S1,T1), . . . , (Sk ,Tk)} on (E1,E2),

such that for every profile v, there exists a set of indices I = I (v) ⊆ [k] for which

X1(v) =
(
E1

⋃
i∈I

Si

)
∪⋃

i∈I
Ti , X2(v) = M \ X1 .

Moreover, I contains the indices of every favorable exchange deal with respect to v,

but no indices of unfavorable exchange deals.

On a high level, an exchange mechanism initially partitions the items into endow-

ments for the players, and then examines a list of possible exchange deals. Every

exchange that improves both players is performed, while every exchange that re-

duces the value of even one player is avoided. The mechanism may also perform

other exchanges where one player is indifferent and the other player can be either

indifferent or improved. Whether such exchange deals are materialized or not is up to

the tie-breaking rule employed by the mechanism. The following example illustrates

an exchange mechanism.

Example 3. Let M = {1, . . .5}, and consider the following mechanism Y , with E1 =
{1,2,3}, E2 = {4,5}, and a valid set of exchange deals D = {({2,3}, {4})} on (E1,E2): One can

think of such a mechanism as if Y initially reserves the set E1 for player 1 and the set

E2 for player 2. Then it examines whether exchanging {2,3} with {4} strictly improves

3
If we think about E1,E2 as fixed a priori, then exchange mechanisms are a generalization of fixed

deal exchange rules in general exchange markets for two players (see Pápai, 2007).

48 Chapter 3. Truthful Allocation Mechanisms Without Payments

both players, and performs the exchange only if the answer is yes. Mechanism Y is

an example of an exchange mechanism with only one possible exchange deal. Again,

one can see that no player has an incentive to lie.

For the following input v , the circles denote the allocation produced.

v =
(

6 2 3 7 1

1 6 1 4 7

)
.

Picking-Exchange Mechanisms Finally, we define the class of picking-exchange

mechanisms which is a generalization of both picking and exchange mechanisms.

Definition 3.1.3. A mechanism X is a picking-exchange mechanism if there exists a

partition (N1, N2,E1,E2) of M , sets of offers O1 and O2 on N1 and N2 respectively, and

a valid set of exchange deals D = {(S1,T1), . . . , (Sk ,Tk)} on (E1,E2), such that for every

profile v, Xi (v)∩Ni ∈ argmaxS∈Oi
vi (S) and X1(v)∩(E1∪E2) = (E1

⋃
i∈I Si)∪⋃

i∈I Ti , where

I = I (v) ⊆ [k] contains the indices of all favorable exchange deals, but no indices of

unfavorable exchange deals.

It is helpful to think that a picking-exchange mechanism runs independently a

picking mechanism on N1∪N2 and an exchange mechanism on E1∪E2, like in Example

4. Although this is true under the assumption that the players’ valuation functions

are such that no two sets have the same value, it is not true for general additive

valuations. The reason is that the tie-breaking for choosing the offers from O1 and O2

may not be independent from the decision of whether to perform each exchange that

is neither favorable nor unfavorable.

The following example illustrates a picking exchange mechanism.

Example 4. Let M = {1, . . . ,11}, and consider the mechanism Z that partitions M into

N1 = {1,2,3,4}, N2 = {5,6}, E1 = {7,8,9} and E2 = {10,11}, and is the combination of X

and Y from the previous two examples: On input v, Z runs X on N1 ∪N2 and Y on

E1 ∪E2. It outputs the union of the outputs of X and Y .

For the following input v , the circles denote the final allocation.

v =
(

3 5 5 10 4 2 6 2 3 7 1

2 3 6 1 5 3 1 6 1 4 7

)
.

3.1.2 Truthfulness and Picking-Exchange Mechanisms

Essentially, we show that a mechanism is truthful if and only if it is a picking-

exchange mechanism. We begin with the easier part of our characterization, namely

that under the assumption that each valuation function induces a strict preference

relation over all possible subsets, every picking-exchange mechanism is truthful.

Recall that the set of such profiles is denoted by V 6=
m .

Theorem 3.1.4. When restricted to V 6=
m , every picking-exchange mechanism X for

allocating m items is truthful.

3.1. Characterization of Truthful Mechanisms 49

Remark 3.1.5. For simplicity, Theorem 3.1.4 is stated for a subclass of additive

valuation functions. However, it holds for general additive valuations as long as the

mechanism uses a sensible tie-breaking rule (e.g., label-based or welfare-based).
4

We are now ready to state the main result of this work.

Theorem 3.1.6. Every truthful mechanism X can be implemented as a picking-exchange

mechanism.

The rest of this subsection is a road map to the proof of Theorem 3.1.6. The proof

is long and technical, so for the sake of presentation, it is broken down to several

lemmata. In order to illustrate the high-level ideas, the proofs of those lemmata are

deferred to Appendix A.

For the rest of this subsection we assume a truthful mechanism X for allocating

all the items in M = [m] to two players with additive valuation functions. Every

statement is going to be with respect to this X .

The Crucial Notion of Control

We begin by introducing the notions of strong desire and of control, which are of key

importance for our characterization. We say that player i strongly desires a set S if

each item in S has more value for him than all the items of M S combined, i.e., if for

every x ∈ S we have vi x >∑
y∈M S vi y .

Definition 3.1.7. We say that player i controls a set S with respect to X , if every

time he strongly desires S he gets it whole, i.e., for every v = (v1, v2) in which player i

strongly desires S, then we have that S ⊆ Xi (v) .

Clearly, given X , any set S can be controlled by at most one player.

The following is a key lemma for understanding how truthful mechanisms operate.

The lemma together with Corollary 3.1.9 below show that every item is controlled by

some player under any truthful mechanism.

Lemma 3.1.8 (Control Lemma). Let S ⊆ M . If there exists a profile v = (v1, v2) such that

both players strongly desire S, and S ⊆ Xi (v) for some i ∈ {1,2}, then player i controls

every T ⊆ S with respect to X .

Proof. Let v = (v1, v2) be a profile such that both players strongly desire S and S ⊆ X1(v)

(the case where S ⊆ X2(v) is symmetric). We first prove the statement for T = S. Let v′ =
(v ′

1, v ′
2) be any profile in which player 1 strongly desires S, i.e., v ′

1x >∑
y∈M S v ′

1y ,∀x ∈ S.

Initially, consider the intermediate profile v∗ = (v1, v ′
2). If S ∩X2(v∗) 6= ; then player 2

would deviate from profile v to v∗ in order to strictly improve his total utility. So by

truthfulness we derive that S ⊆ X1(v∗). Similarly, in the profile v′, if S∩X2(v′) 6= ; then

4
Describing all such tie-breaking rules seems to be an interesting, nontrivial question for future work,

but not our main focus here. It is not hard to see, though, that there exist tie-breaking rules that make

a picking-exchange mechanism nontruthful, e.g., break ties on offers of player 1 so that the value that

player 2 gets from N1 is minimized.

50 Chapter 3. Truthful Allocation Mechanisms Without Payments

player 1 would deviate from v′ to v∗ in order to strictly improve. Thus by truthfulness

we have S ⊆ X1(v′). We conclude that player 1 controls S.

Now, suppose that v′′ = (v ′′
1 , v ′′

2) is any profile in which player 1 strongly desires

T (S. If T * X1(v′′) then player 1 could strictly improve his utility by playing v ′
1

from before (i.e., he declares that he strongly desires S) and getting S) T . Thus, by

truthfulness, T ⊆ X1(v′′), and we conclude that player 1 controls T .

Notice here that the existence of sets that are controlled by some player is always

guaranteed. Specifically, each singleton {x} is always controlled (only) by one of the

players. Indeed, when both players strongly desire {x}, it is always the case that

{x} ⊆ Xi (v) for some i ∈ {1,2}. This is summarized in the following corollary.

Corollary 3.1.9. Let X be a truthful mechanism for allocating the items in M to two

players with additive valuations. For every x ∈ M there exists i ∈ {1,2} such that only

player i controls {x} with respect to X .

Aside from its use in the current proof, the corollary has implications on fairness,

that will be explored in Section 3.2.

Identifying the Components of a Mechanism

Our goal now is to determine the “exchange component” and the “picking component”

of mechanism X . Every picking-exchange mechanism is completely determined by

the seven sets N1, N2, O1, O2, E1, E2, and D mentioned in Definition 3.1.3 (plus a

deterministic tie-breaking rule). Below we try to identify these sets. Later we show

that the mechanism’s behavior is identical to that of a picking-exchange mechanism

defined by them.

To proceed, we will need to consider the collection of all maximal sets controlled

by each player. For i ∈ {1,2}, let

Ai = {S ⊆ M | player i controls S and for any T) S, i does not control T } .

Clearly, every set controlled by player i is a subset of an element of Ai . According to

Lemma 3.1.8, if we consider the set Ci =⋃
S∈Ai

S, i.e., the union of all the sets in Ai ,

this is exactly the set of items that are controlled—as singletons—by player i .

Corollary 3.1.10. The sets C1 and C2 define a partition of M .

Using the Ai s and the Ci s, we define the sets of interest that determine the

mechanism. We begin with Ei =⋂
S∈Ai

S for i ∈ {1,2}. As we are going to see eventually

in Lemma 3.1.18, the “exchange component” of X is observed on E1 ∪E2.

Defining the corresponding valid set of exchange deals D is trickier, and we need

some terminology. Recall that X S
i (v) = Xi (v)∩S. For S ⊆ E1 and T ⊆ E2, we say that

(S,T) is a feasible exchange, if there exists a profile v, such that X E1∪E2
1 (v) = (E1 S)∪T .

In such a case, each of S and T is called exchangeable. An exchangeable set S is

called minimally exchangeable if any S′ (S is not exchangeable. Finally, a feasible

3.1. Characterization of Truthful Mechanisms 51

exchange (S,T) is a minimal feasible exchange, if at least one of S and T is minimally

exchangeable. Now let

D = {(S,T) | (S,T) is a minimal feasible exchange with respect to X } .

Of course, at this point it is not clear whether D is well defined as a valid set of

exchange deals, and this is probably the most challenging part of the characterization.

Next, we define Ni = Ci Ei and Oi = {S Ei | S ∈ Ai } for i ∈ {1,2}. As shown in

Lemmata 3.1.11 and 3.1.12, we identify the “picking component” of X on N1 ∪N2,

and Oi will correspond to the set of offers.

Note that by Corollary 3.1.10 and the above definitions, (N1, N2,E1,E2) is a par-

tition of M . The intuition behind breaking Ci into Ni and Ei is that player i has

different levels of control on those two sets. The fact that Ei is contained in every

maximal set controlled by player i will turn out to mean that X gives the ownership

of Ei to player i . On the other hand, the control of player i on Ni is much more

restricted as shown below.

Cracking the Picking Component

The first step is to show that the Oi s defined above, greatly restrict the possible

allocations of the items of N1 ∪N2. In particular, whatever player i receives from Ni

must be contained in some set of Oi .

Lemma 3.1.11. For every profile v and every i ∈ {1,2}, there exists S ∈ Oi such that

X Ni

i (v) ⊆ S.

The idea behind the proof of Lemma 3.1.11 is that by receiving some X Ni

i (v) not

contained in any set of Oi , player i is able to extend his control to subsets not

contained in Ci , thus leading to contradiction. The proof, as many of the proofs of the

remaining lemmata, includes the careful construction of a series of profiles, where in

each step one has to argue about how the allocation does or does not change.

Given the restriction implied by Lemma 3.1.11, next we can prove that the subset

of Ni that player i receives must be the best possible from his perspective, hence the

mechanism behaves as a picking mechanism on each Ni . Intuitively, suppose that

player 1 receives a subset S of N1 which is not an element of O1. By Lemma 3.1.11,

S is contained in an element S′
of O1. Since player 1 controls S′

, this means that he

gave up part of his control to gain something that he was not supposed to. Actually,

it can be shown that it is the case where player 2 also gave part of his control (either

on N2 or E2). This mutual transfer of control, combined with truthfulness, eventually

leads to profiles where some of the items must be given to both players at the same

time, hence a contradiction.

Lemma 3.1.12. For every profile v and every i ∈ {1,2} we have X Ni

i (v) ∈ argmaxS∈Oi
vi (S).

52 Chapter 3. Truthful Allocation Mechanisms Without Payments

Now we know that X behaves as the “right” picking-exchange mechanism on

N1 ∪N2. For most of the rest of the proof we would like to somehow ignore this part

of X and focus on E1 ∪E2.

Separating the Two Components

As mentioned right after Definition 3.1.3, there is some kind of independence between

the two components of a picking-exchange mechanism, at least when restricted on

V 6=
m . This independence should be present in X as well; in fact we are going to exploit

it to get rid of N1 ∪N2 until the last part of the proof.

Lemma 3.1.13. Let v = (v1, v2),v′ = (v ′
1, v ′

2) ∈ V 6=
m such that vi j = v ′

i j for all i ∈ {1,2} and

j ∈ E1 ∪E2. Then X E1∪E2
1 (v) = X E1∪E2

1 (v′).

The lemma states that assuming strict preferences over all subsets, the allocation

of E1∪E2 does not depend on the values of either player for the items in N1∪N2. What

allows this separation is the complete lack of ties in the restricted profile space.

Without loss of generality we may assume that E1 ∪E2 = [`]. We can define a

mechanism XE for allocating the items of [`] to two players with valuation profiles in

V 6=
`

as

XE (v) = (X E1∪E2
1 (v′), X E1∪E2

2 (v′)), for every v ∈ V 6=
`

,

where v′ is any profile in V 6=
m with vi j = v ′

i j for all i ∈ {1,2} and j ∈ [`]. This new

mechanism is just the projection of X on E1 ∪E2 restricted on a domain where it is

well-defined. The truthfulness of XE on V 6=
`

follows directly from the truthfulness of

X on V 6=
m . Moreover, it is easy to see that player i controls Ei with respect to XE , for

i ∈ {1,2}.

The plan is to study XE instead of X , show that XE is an exchange mechanism,

and finally sew the two parts of X back together and show that everything works

properly for any profile in Vm. One issue here is that maybe the set of feasible ex-

changes with respect to XE is greatly reduced, in comparison to the set of feasible

exchanges with respect to X , because of the restriction on the domain. In such a

case, it will not be possible to argue about exchanges in D that are not feasible any-

more. It turns out that this is not the case; the set of possible allocations (of E1 ∪E2)

is the same, whether we consider profiles in Vm or in V 6=
m .

Lemma 3.1.14. For every profile v ∈ Vm there exists a profile v′ ∈ V 6=
m such that X (v) =

X (v′).

In particular, the set of feasible exchanges on E1 ∪E2 is exactly the same for X

and XE , and thus we will utilize the following set of exchanges.

D = {(S,T) | (S,T) is a minimal feasible exchange with respect to XE } .

3.1. Characterization of Truthful Mechanisms 53

Cracking the Exchange Component

In the attempt to show that XE is an exchange mechanism, the first step is to show

that D is indeed a valid set of exchange deals.

Lemma 3.1.15. D is a valid set of exchange deals on (E1,E2).

The above lemma involves three main steps. First we show that each minimally

exchangeable set is involved in exactly one exchange deal. Then, we guarantee that

minimally exchangeable sets can be exchanged only with minimally exchangeable

sets, and finally, we show that minimally exchangeable sets are always disjoint. There

is a common underlying idea in the proofs of these steps: whenever there exist two

feasible exchanges that overlap in any way, we can construct a profile where both of

them are favorable but the two players disagree on which of them is best. On a high

level, each player can “block” his least favorable of the conflicting exchanges, and this

leads to violation of truthfulness.

Lemma 3.1.15 implies that every exchangeable set S ⊆ E1 can be decomposed as

S = W ∪⋃
i∈I Si , where W = S

⋃
i∈I Si does not contain any minimally exchangeable

sets. Ideally, we would like two things. First, the set W in the above decomposition

to always be empty, i.e., every exchangeable set should be a union of minimally

exchangeable sets. Second, we want every union of minimally exchangeable subsets

of E1 to be exchangeable only with the corresponding union of minimally exchangeable

subsets of E2, and vice versa. It takes several lemmata and a rather involved induction

to prove those. A key ingredient of the inductive step is a carefully constructed

argument about the value that each player must gain from any exchange.

Lemma 3.1.16. For every exchangeable set S ⊆ E1, there exists some I ⊆ [k] such that

S =⋃
i∈I Si . Moreover, S is exchangeable with T =⋃

i∈I Ti and only with T .

Finally, we have all the ingredients to fully describe XE as an exchange mechanism

on E1 ∪E2 and set of exchange deals D.

Lemma 3.1.17. Given any profile v ∈ V 6=
`

, each exchange in D is performed if and only

if it is favorable, i.e., X E1∪E2
1 (v) = (E1

⋃
i∈I Si)∪⋃

i∈I Ti , where I ⊆ [k] contains exactly

the indices of all favorable exchange deals in D.

Putting the Mechanism Back Together

As a result of Lemma 3.1.17 (combined, of course, with Lemmata 3.1.12 and 3.1.13),

the characterization is complete for truthful mechanisms defined on V 6=
m . For general

additive valuation functions, however, we need a little more work. This is to counter-

balance the fact that in the presence of ties the allocations of N1∪N2 and E1∪E2 may

not be independent.

By Lemmata 3.1.14 and 3.1.16, we know that for any v ∈ Vm, X E1∪E2
1 (v) is the result

of some exchanges of D taking place. There are two things that can go wrong: X

performs an unfavorable exchange, or it does not perform a favorable one. In either of

54 Chapter 3. Truthful Allocation Mechanisms Without Payments

these cases it is possible to construct some profile in V 6=
m that leads to contradiction.

Hence we have the following lemma.

Lemma 3.1.18. Given any profile v ∈ Vm , X E1∪E2
1 (v) = (E1

⋃
i∈I Si)∪⋃

i∈I Ti , where I ⊆ [k]

contains the indices of all favorable exchange deals in D, but no indices of unfavorable

exchange deals.

Clearly, Lemma 3.1.18, together with Lemma 3.1.12 concludes the proof of Theo-

rem 3.1.6.

3.1.3 Immediate Implications of Theorem 3.1.6

As mentioned in Sections 1.2 and 1.3, there are several works characterizing truthful

mechanisms in combination with other notions, such as Pareto efficiency, nonbossi-

ness, and neutrality (these results are usually for unrestricted, not necessarily addi-

tive valuations). Pareto efficiency means that there is no other allocation where one

player strictly improves and none of the others are worse-off. Non-bossiness means

that a player cannot affect the outcome of the mechanism without changing his own

bundle of items. Finally, neutrality refers to a mechanism being consistent with

a permutation on the items, i.e., permuting the items results in the corresponding

permuted allocation.

Although such notions are not our main focus, the purpose of this short discus-

sion is twofold. On one hand, we illustrate how our characterization immediately

implies a characterization for mechanisms that satisfy these extra properties under

additive valuations, and on the other hand we see how these properties are either

incompatible with fairness or irrelevant in our context.

To begin with, nonbossiness comes for free in our case, since we have two players

and all the items must be allocated. Neutrality and Pareto efficiency, however, greatly

reduce the space of available mechanisms. Note that it makes more sense to study

neutral mechanisms when the valuation functions induce a strict preference order

over all sets of items.

Corollary 3.1.19. Every neutral, truthful mechanism X on V 6=
m can be implemented as

a picking-exchange mechanism, such that

1. there exists i ∈ {1,2} such that Ei = [m], or

2. there exists i ∈ {1,2} such that Ni = [m] and Oi = {S ⊆ [m] | |S| = κ} for some κ< m.

Corollary 3.1.20. Every Pareto efficient, truthful mechanism X can be implemented

as a picking-exchange mechanism, such that

1. there exists i ∈ {1,2} such that Ei = [m], or

2. there exists j ∈ [m] such that Ei1 = { j }, Ei2 = [m] { j }, where {i1, i2} = {1,2}, and

D = {(E1,E2)}, or

3. there exists i ∈ {1,2} such that Ni = [m] and Oi = {S ⊆ Ni | |S| = m −1}.

3.2. A Necessary Fairness Condition and its Implications 55

It is somewhat surprising that the resulting mechanisms are a strict superset

of dictatorships, even when we impose both properties together. Pareto efficiency,

however, allows only mechanisms that are rather close to being dictatorial, and thus

cannot guarantee fairness of any type. On the other hand, most of the mechanisms

defined and studied in Section 3.2 are neutral, yet neutrality is not implied by the

fairness concepts we consider, nor the other way around.

3.2 A Necessary Fairness Condition and its Implications

In this section, we explore some implications of Theorem 3.1.6 on fairness properties,

i.e., on the design of mechanisms where on top of truthfulness, we would like to

achieve fairness guarantees.

In Section 3.2.1 we show that the Control Lemma implies that truthfulness pre-

vents any bounded approximation for envy-freeness and proportionality. Then, we

move on describing a necessary fairness condition, in terms of our notion of “control”,

that summarizes a common feature of several relaxations of fairness and provide a

restricted version of our characterization that follows this fairness condition. This

will allow us, in Section 3.2.2, to examine what this new class of mechanisms can

achieve in each of these fairness concepts.

3.2.1 Implications of the Control Lemma.

Control of singletons.

The basic restriction that truthfulness imposes to every mechanism (leading to poor

results for some fairness concepts) comes from Corollary 3.1.9, an immediate corol-

lary of the Control Lemma, stating that every single item is controlled by some player.

We begin by studing how the above corollary affects two of the most researched

notions in the fair division literature, namely proportionality and envy-freeness. It

is well known that even without the requirement for truthfulness, it is impossible

to achieve any of these two objectives, simply because in the presence of indivisible

goods, envy-free or proportional allocations may not exist.
5

This leads to the definition of approximation versions of these two concepts for set-

tings with indivisible goods. For example, one could try to construct algorithms such

that for every instance, an approximation to the minimum possible envy admitted by

the instance is guaranteed. Similarly, approximate proportionality can be considered,

i.e., find allocations that achieve an approximation to the best possible value that an

instance can guarantee to all agents. See also the discussion in Subsection 1.4.2 on

defining the approximation versions of these problems. Note that if time complexity

5
Consider, for instance, a profile where both players desire only the first item and have a negligible

value for the other items. Then one of the players will necessarily remain unsatisfied and receive a value

close to zero, no matter what the allocation is.

56 Chapter 3. Truthful Allocation Mechanisms Without Payments

is not an issue, we can always identify the allocation with the best possible envy or

with the best possible proportionality, achievable by a given instance.

We are now ready to state our first application, showing that truthfulness prohibits

us from having any approximation to the minimum envy or to proportionality. This

greatly improves the conclusions of Lipton et al. (2004) and Caragiannis et al. (2009)

that truthful mechanisms cannot attain the optimal minimum envy allocation.

Application 3.2.1. For any truthful mechanism that allocates all the items to two

players with additive valuations, the approximation achieved for either proportionality

or the minimum envy is arbitrarily bad (i.e., not lower bounded by any positive function

of m).

Proof. Consider a setting with m items, and a truthful mechanism X . Suppose now

that item 1 is controlled by player 1 with respect to X . This means that in the profile

v = ([m 1 1 . . . 1], [md 1 1 . . . 1]) player 1 must obtain item 1, and player 2 ends up

with a negligible fraction of his total value for large enough d . The optimal solution

would be to assign the first item to the second player and the last m items to the

first player, which provides an envy-free and proportional allocation. We conclude

that the approximation guarantee that can be obtained by a truthful mechanism is

arbitrarily high.

So far, the conclusion is that even approximate proportionality or envy-freeness

are quite stringent and incompatible with truthfulness because of the Control Lemma.

The next step would be to relax these notions. There have been already a few

approaches on relaxing proportionality and envy-freeness under indivisible goods,

leading to solutions such as the maximin share fairness, envy-freeness up to one

item (Budish, 2011), as well as the type of worst-case guarantees proposed by Hill

(1987) (recall Definitions 1.4.3, 1.4.5 and 1.4.6 in Subsection 1.4.2). The fact that a

truthful mechanism X yields control of singletons does not seem to have such detri-

mental effects on these notions. However, if even a single pair of items is controlled

by a player, the same situation arises.

Control of pairs

We propose the following necessary (but not sufficient) condition that captures a

common aspect of all these relaxations of fairness. This allows us to treat all the

above concepts of fairness in a unified way.

Definition 3.2.2. We say that a mechanism X yields control of pairs if there exists

i ∈ {1,2} and S ⊆ [m] with |S| = 2, such that player i controls S with respect to X .

The following lemma states that in order to obtain impossibility results for the

above concepts, it is enough to focus on mechanisms with control of pairs.

Lemma 3.2.3. In order to achieve (either exactly or within a bounded approximation)

the above mentioned relaxed fairness criteria, a truthful mechanism that allocates all

the items to two players with additive valuations cannot yield control of pairs.

3.2. A Necessary Fairness Condition and its Implications 57

So now we are ready to move to a complete characterization of truthful mecha-

nisms that do not yield control of pairs. Of course such mechanisms are picking-

exchange mechanisms, but our fairness condition allows only singleton offers, and

the exchange part is completely degenerate.

Definition 3.2.4. A mechanism X for allocating all the items in [m] to two players is

a singleton picking-exchange mechanism if it is a picking-exchange mechanism where

for each i ∈ {1,2} at most one of Ni and Ei is nonempty, |Ei | ≤ 1, and

Oi =
{{x} | x ∈ Ni } when Ni 6= ;

{;} otherwise

i.e., the sets of offers contain all possible singletons.

Hence, typically, in a singleton picking-exchange mechanism player i receives

from Ni ∪Ei only his best item. Moreover, for m ≥ 3, no exchanges are allowed.
6

Lemma 3.2.5. Every truthful mechanism for allocating all the items to two players with

additive valuation functions that does not yield control of pairs can be implemented as

a singleton picking-exchange mechanism.

Proof. From theorem 3.1.6 we know that every truthful mechanism can be imple-

mented as a picking-exchange mechanism. So consider such a mechanism and let

us examine the structure of sets Ni ,Ei and Oi . Notice that by the definition of picking-

exchange mechanisms, each player i controls Ni ∪Ei . If both Ni ,Ei are nonempty,

or |Ei | > 1, or Oi contains a non-singleton set, then the respective player has control

over some pair of items. Thus we can conclude that every possible mechanism can

be implemented as a singleton picking-exchange mechanism.

It is interesting to note that, in contrast to Application 3.2.1, proving Lemma 3.2.5

without Theorem 3.1.6 is not straightforward. In fact, it requires a partial character-

ization which (on a high level) is similar to characterizing the picking component of

general mechanisms.

3.2.2 Applications to Relaxed Notions of Fairness

It is now possible to apply Lemma 3.2.5 on each fairness notion separately, and

characterize every truthful mechanism that achieves each criterion. Regarding the

remaining proofs of this section, it suffices to focus only on singleton picking-exchange

mechanisms. Indeed, by Theorem 3.1.6 we know that every truthful mechanism can

be implemented as a picking-exchange mechanism, and by Lemmata 3.2.3 and 3.2.5

only the singleton picking-exchange mechanisms among them may achieve some

fairness guarantee.

6
The only exceptions—and the only such mechanisms where both E1 and E2 are nonempty—are two

mechanisms for the degenerate case of m = 2, e.g., N1 = N2 = ;, O1 = O2 = {;}, E1 = {a}, E2 = {b} and

D = {({a}, {b})}, where {a,b} = {1,2}.

58 Chapter 3. Truthful Allocation Mechanisms Without Payments

Envy-freeness up to one item. We start with a relaxation of envy-freeness. Below

we provide a complete description of the mechanisms that satisfy this criterion.

Application 3.2.6. For m ≤ 3, every singleton picking-exchange mechanism achieves

envy-freeness up to one item. For m = 4 every singleton picking-exchange mechanism

with |N1| = |N2| = 2 achieves envy-freeness up to one item. Finally, for m ≥ 5 there is

no truthful mechanism that allocates all the items to two players and achieves envy-

freeness up to one item.

Proof. Initially it is easy to see that when m = 1 or m = 2, the statement holds in

a trivial way for every singleton picking-exchange mechanisms. Indeed, in every

instance each player gets at most one item and thus the value a player derives in the

worst case is greater or equal to the value of the empty set (bundle of the other player

minus an item).

In the case of m = 3, in any instance one player gets one item and the other player

two items. The singleton picking-exchange mechanism guarantees that the player

who gets one item is allocated with at least his second best in terms of value, so the

value he derives is always greater or equal to the value of his least desirable item

(bundle of the other player minus an item). On the other hand, the player who is

allocated with two items always derives value greater or equal to the value of the

empty set.

Finally, in the case of m = 4 with |N1| = |N2| = 2, every player gets two items at

every instance. The singleton picking-exchange mechanism guarantees that each

player will receive at least his second best item, the value of which is greater or equal

to the value of his third or fourth best item.

On the other hand, in case of m ≥ 5 consider profile v1 = [1+ ε,1, ...,1]∪ [1,δ, ...,δ],

v2 = [1,δ, ...,δ]∪ [1+ ε,1, ...,1] where 1 À εÀ δ > 0. The first vector of values is for N1

(or E1) and the second is for N2 (or E1); notice that it is possible for one of them to

be empty. We only examine singleton picking-exchange mechanisms. It is easy to

see that in such a case, by the pigeonhole principle, no singleton picking-exchange

mechanism can achieve envy-freeness up to one item for both players.

Maximin share fairness and related notions. For maximin share allocations a

truthful mechanism was suggested by Amanatidis, Birmpas, and Markakis (2016b)

for any number of items and any number of players. For two players, their mecha-

nism is the singleton picking-exchange mechanism with N1 = [m] and produces an

allocation that guarantees to each player a
1

bm/2c -approximation of his maximin share.

It was left as an open problem whether a better truthful approximation exists. Here

we show that this approximation is tight; in fact, almost any other singleton picking-

exchange mechanism performs strictly worse. Note that the best previously known

lower bound for two players was 1/2.

Application 3.2.7. For any m there exists a singleton picking-exchange mechanism

that guarantees to player i a bmax{2,m}/2c−1
-approximation of µi , for i ∈ {1,2}. There is

3.2. A Necessary Fairness Condition and its Implications 59

no truthful mechanism that allocates all the items to two players and achieves a better

guarantee with respect to maximin share fairness.

Proof. We only need to prove that among all the singleton picking-exchange mech-

anisms there is no better approximation ratio than bm/2c−1
for m ≥ 3. Consider

profile v1 = [1+ε,1, ...,1]∪ [|N1∪E1|,δ, ...,δ], v2 = [|N2∪E2|,δ, ...,δ]∪ [1+ε,1, ...,1], where

1 À εÀ δ> 0. The first vector of values is for N1 (or E1) and the second is for N2 (or

E1); notice that it is possible for one of them to be empty.

It is easy to see that when both N1 ∪E1, N2 ∪E2 are nonempty, then µi ≥ |Ni ∪Ei |
while they both receive value that is slightly greater than 1. Therefore, no singleton

picking-exchange mechanism can achieve a better approximation ratio than bm/2c−1

for both players.

On the other hand, if N1 ∪E1 = ; (the other case is symmetric) then this is the

mechanism in Amanatidis, Birmpas, and Markakis, 2016b that achieves exactly

bm/2c−1
.

Regarding now allocations that guarantee an approximation of the function V2(αi)

defined by Hill (1987) (recall Definition 1.4.5 in Subsection 1.4.2), the singleton

picking-exchange mechanism with N1 = [m] was also suggested by Markakis and

Psomas (2011) as a
1

bm/2c -approximation of V2(αi).7 This comes as no surprise, since

there exists a strong connection between maximin shares and the function Vn, es-

pecially for two players. This is illustrated in the following corollary, where both

the positive and the negative results coincide with the ones for the maximin share

fairness.

Application 3.2.8. For any m there exists a singleton picking-exchange mechanism

that guarantees to player i a bmax{2,m}/2c−1
-approximation of V2(αi), for i ∈ {1,2},

where αi = max j∈[m] vi j . There is no truthful mechanism that allocates all the items to

two players and achieves a better guarantee with respect to the V2(αi)s.

Again, the best previously known lower bound for two players was constant,

namely 2/3 due to Markakis and Psomas (2011). In Applications 3.2.7 and 3.2.8,

it is stated that there exists a
1

bm/2c -approximate singleton picking-exchange mech-

anism. It is interesting that any singleton picking-exchange mechanism does not

perform much worse. Following the corresponding proofs, we have that even the

worst singleton picking-exchange mechanism achieves a
1

m−1 -approximation in each

case.

Remark 3.2.9. Gourvès, Monnot, and Tlilane (2015) introduced a variant of Vn,

called Wn, and showed that there always exists an allocation such that each player i

receives Wn(αi) ≥ Vn(αi) (where the inequality is often strict). Since the definition of

Wn is rather involved even for n = 2, we omit a formal discussion about it. However, it

is not hard to show that for every valuation function vi we have V2(αi) ≤W2(αi) ≤µi

and thus the analog of Application 3.2.8 holds.

7
The approximation factor in Markakis and Psomas, 2011 is expressed in terms of V2(1/m), but it

simplifies to bm/2c−1
.

60 Chapter 3. Truthful Allocation Mechanisms Without Payments

Remark 3.2.10. Amanatidis, Birmpas, and Markakis (2016b) made the following

interesting observation: every single known truthful mechanism achieving a bounded

approximation of maximin share fairness is ordinal, in the sense that it only needs

a ranking of the items for each player rather than his whole valuation function.

Finding truthful mechanisms that explicitly take into account the players’ valuation

functions in order to achieve better guarantees was posed as a major open problem.

Note that, weird tie-breaking aside, all singleton picking-exchange mechanisms are

ordinal! Therefore, from the mechanism designer’s perspective, it is impossible to

exploit the extra cardinal information given as input and at the same time maintain

truthfulness and some nontrivial fairness guarantee.

3.3 Truthful Mechanisms for Many Players

We introduce a family of non-dictatorial, truthful mechanisms for any number of

players. Our mechanisms are defined recursively; in analogy to serial dictatorships,

the choices of a player define the sub-mechanism used to allocate the items to the

remaining players. Here, however, this serial behavior is observed “in parallel” in

several sets of a partition of M .

A generalized deal between k players is a collection of (up to k(k −1)) exchange

deals between pairs of players. A set D of generalized deals is called valid if all the

sets involved in all these exchange deals are nonempty and pairwise disjoint. Given

a profile v = (v1, v2, . . . , vn) we say that a generalized deal is favorable if it strictly im-

proves all the players involved, while it is unfavorable if there exists a player involved

whose utility strictly decreases.

Definition 3.3.1. A mechanism X for allocating all the items in [m] to n players is

called a serial picking-exchange mechanism if

1. when n = 1, X always allocates the whole [m] to player 1.

2. when n ≥ 2, there exist a partition (N1, . . . , Nn ,E1, . . . ,En) of [m], sets of offers

Oi on Ni for i ∈ [n], a valid set D of generalized deals, and a mapping f from

subsets of M to serial picking-exchange mechanisms for n−1 players, such that

for every profile v = (v1, . . . , vn) we have for all i ∈ [n]:

• X Ni

i (v) ∈ argmaxS∈Oi
vi (S),

• X E
i (v), where E =⋃

j∈[n] E j , is the result of starting with Ei and performing

some of the deals in D, including all the favorable deals but no unfavorable

ones,

• the items of Ni X Ni

i (v) are allocated to players in [n] {i } using the serial

picking-exchange mechanism f
(
Ni X Ni

i (v)
)
.

Clearly, serial picking-exchange mechanisms generalize picking-exchange mech-

anisms studied in Section 3.1. The following example illustrates how such a mecha-

nism looks like for three players.

3.3. Truthful Mechanisms for Many Players 61

Example 5. Suppose that we have three players with additive valuations. For simplic-

ity, assume that each player’s valuation induces a strict preference over all possible

subsets of items. Let M = [100] be the set of items, and consider the following relevant

ingredients of our mechanism:

• N1 = {1,2, . . . ,20}, O1 = {{1,2,3}, N1 {1}}

• N2 = {21,22, . . . ,50}, O2 = {S ⊆ N2 | |S| = 6}

• N3 = {51,52, . . . ,70}, O3 = {{51, . . . ,60}, {61, . . . ,70}}

• E1 = {71, . . . ,80}, E2 = {81, . . . ,90}, E3 = {91, . . . ,100}

• D = {[
({75,79}, {83})1,3

]
,
[
({71}, {88})1,2, ({72,80}, {95})1,3, ({85}, {99,100})2,3

]}
• f is a mapping from subsets of M to picking-exchange mechanisms (for 2 play-

ers)

The above sets are the analog of the corresponding sets of a picking-exchange mecha-

nism. The deals, however, are a bit more complex. E.g., by
[
({71}, {88})1,2, ({72,80}, {95})1,3,

({85}, {99,100})2,3
]

we denote the deal in which:

– player 1 gives item 71 to player 2 and items 72, 80 to player 3

– player 2 gives item 88 to player 1 and item 85 to player 3

– player 3 gives item 95 to player 1 and items 99, 100 to player 2

The mapping f suggests which truthful mechanism should be used every time there

are items left to be allocated to only two players.

We are ready to describe our mechanism X :

1. The mechanism gives endowments E1,E2,E3 to the three players and then per-

forms each exchange deal that strictly improves all the players involved.

2. Then, for each i ∈ {1,2,3}, the mechanism gives to player i his best set in Oi , say

Si .

3. Finally, for each i ∈ {1,2,3}, X uses mechanism f (Ni Si) to allocate the items

of Ni Si to players in {1,2,3} i .

Like picking-exchange mechanisms, serial picking-exchange mechanisms are truth-

ful, given an appropriate tie-breaking rule (e.g., a label-based tie-breaking rule). To

bypass a general discussion about tie-breaking, however, we may assume that each

player’s valuation induces a strict preference over all subsets of M . We denote by

V 6=
n,m the set of profiles that only include such valuation functions. Following almost

the same proof, however, we have that for general additive valuations every serial

picking-exchange mechanism is truthful when using label-based tie-breaking.

Theorem 3.3.2. When restricted to V 6=
n,m , every serial picking-exchange mechanism X

for allocating m items to n players is truthful.

62 Chapter 3. Truthful Allocation Mechanisms Without Payments

3.4 Directions for Future Research

A natural question to ask is whether our characterization can be extended for more

than two players. Characterizing the truthful mechanisms without money for any

number of additive players is, undoubtedly, a fundamental open problem. However,

as indicated by Definition 3.3.1, there seems to be a much richer structure when

one attempts to describe such mechanisms, even though serial picking-exchange

mechanisms are only a subset of nonbossy truthful mechanisms. In particular, the

notion of control that was crucial for identifying the structure of truthful mechanisms

for two players does not convey enough information anymore. Instead, there seem to

exist several different levels of control, and understanding this structure still remains

a very interesting and intriguing question. It is also not clear if more positive results

can arise when payments are allowed. Similar mechanism design questions also

remain open for a related problem studied by Markakis and Psomas, 2011.

63

Part II

Procurement Auctions

with Budget Constraints

65

Chapter 4

Introduction

4.1 Budget-Feasible Mechanism Design

In this second part, we study a class of mechanism design problems under a budget

constraint. Consider a reverse auction setting, where a single buyer wants to select

a subset, among a set A of agents, for performing some tasks. Each agent i comes

at a cost ci , in the case that he is chosen. The buyer has a budget B and a valuation

function v(·), so that v(S) is the derived value if S ⊆ A is the chosen set. The purely

algorithmic version then asks to maximize the generated value subject to the con-

straint that the total cost of the selected agents should not exceed B (often referred

to as a “hard” budget constraint).

The purely algorithmic version of the problem results in natural “budgeted” ver-

sions of known optimization problems. Since these problems are typically NP-hard,

our focus is on approximation algorithms. Most importantly, in the setting consid-

ered here, the true cost of each agent is private information and we would like to

design mechanisms that elicit truthful reporting by all agents. Hence, our ideal goal

is to have truthful mechanisms that achieve a good approximation to the optimal

value for the auctioneer, and are budget feasible, i.e., the sum of the payments to the

agents does not exceed the prespecified budget. This framework of budget feasible

mechanisms is motivated by recent application scenarios including crowdsourcing

platforms, where agents can be viewed as workers providing tasks (e.g., Anari, Goel,

and Nikzad, 2014; Goel, Nikzad, and Singla, 2014), and influence maximization in

networks, where agents correspond to influential users (see e.g., Singer, 2012, where

the chosen objective is a coverage function).

Budget feasibility is a tricky property that makes the problem more challenging,

with respect to truthfulness, as it already rules out well known mechanisms such

as VCG. Although the algorithmic versions of such problems often admit constant

factor approximation algorithms, it is not clear how to appropriately convert them

into truthful budget feasible mechanisms. We stress that the question is nontrivial

even if we allow exponential time algorithms, since computational power does not

necessarily make the problem easier (see the discussion in Dobzinski, Papadimitriou,

and Singer (2011)). All these issues create an intriguing landscape, where one needs

to strike a balance between the incentives of the agents and the budget constraints.

66 Chapter 4. Introduction

Budgeted mechanism design was first studied by Singer (2010) when v(·) is an

additive or a nondecreasing submodular function. Later on, follow-up works provided

refinements and further results for richer classes of functions like XOS and subad-

ditive functions (see the related work section). Although these results shed more

light on our understanding of the problem, there are still several interesting issues

that remain unresolved both for submodular and non-submodular cases. First, the

current results on submodular valuations are not known to be tight. Further, and

most importantly, when going beyond submodularity, to XOS functions, we are not

even aware of general mechanisms with small approximation guarantees, let alone

deterministic polynomial time mechanisms.

Going beyond submodular valuations creates severe challenges in general, and

thus any results for general classes of functions are relatively poor. Specific prob-

lems have been studied however, with quite promising results. The first attempt

with a non-submodular objective was due to Chen, Gravin, and Lu (2011) who gave

a (2+p
2)-approximation mechanism for a non-submodular variation of Knapsack,

while, recently, Goel, Nikzad, and Singla (2014) studied a budgeted maximization

problem with matching constraints, which is not submodular, and they achieve an

approximation ratio of 3+o(1), but under the large market assumption.
1

Despite such

scarce results, we are not aware of mechanisms with good guarantees even for very

standard variants of Knapsack with matching or matroid constraints. Such problems

are studied in Chapter 7.

Moreover, most existing works make the assumption that the valuation function

is non-decreasing, i.e., v(S) ≤ v(T) for S ⊆ T , notable exceptions being the works of

Dobzinski, Papadimitriou, and Singer (2011) and Bei et al. (2012). Although mono-

tonicity makes sense in several scenarios, one can think of examples where it is

violated. For instance, Dobzinski, Papadimitriou, and Singer (2011) studied the un-

weighted Budgeted Max Cut problem, as an eminent example of a non-monotone

submodular objective function. Moreover, when studying models for influence maxi-

mization problems in social networks, adding more users to the selected set may some

times bring negative influence (Borodin, Filmus, and Oren, 2010) (some combinations

of users may also not be compatible or well fitted together). To further motivate the

study of non-monotone submodular objectives, consider the following well-studied

sensor placement problem (Caselton and Zidek, 1984; Cressie, 1993; Krause, Singh,

and Guestrin, 2008): assume that we want to monitor some spatial phenomenon

(e.g., the temperature of a specific environment), modeled as a Gaussian process. We

may place sensing devices on some of the prespecified locations, but each location

has an associated cost. A criterion for finding an optimal such placement, suggested

by Caselton and Zidek (1984) for the unit cost case, is to maximize the mutual infor-

mation between chosen and non chosen locations, i.e., we search for the subset of

locations that minimizes the uncertainty about the estimates in the remaining space.

1
A market is said to be large if the number of participants is large enough that no single person can

affect significantly the market outcome, i.e., maxi ci /B = o(1).

4.2. Related Work 67

Such mutual information objectives are submodular but not monotone. In addi-

tion, it is straightforward to modify this problem to model participatory crowdsensing

scenarios where users have incentives to lie about the true cost of installing a sensor.

It becomes apparent that we would like to aim for truthful mechanisms with

good performance for subclasses of non-monotone functions. At the moment, the

few results known for arbitrary non-monotone submodular functions have very large

approximation ratios and often superpolynomial running time. Even worse, in most

cases, we do not even know of deterministic mechanisms (see Table 6.1). In trying

to impose more structure so as to have better positive results, there is an interesting

observation to make: the non-monotone examples mentioned so far, i.e., cut func-

tions and mutual information functions, are symmetric
2

submodular, a prominent

subclass of non-monotone submodular functions, where the value of a set S equals

the value of its complement. This subclass has received already considerable atten-

tion in operations research (see e.g., Fujishige, 1983; Queyranne, 1998, where more

examples are also provided). We therefore find that symmetric submodular functions

form a suitable starting point for the study of non-monotone functions. This is the

subject of Chapter 6.

4.2 Related Work

The study of budget feasible mechanisms, as considered here, was initiated by Singer

(2010), who gave a randomized constant factor approximation mechanism for nonde-

creasing submodular functions. Later, Chen, Gravin, and Lu (2011) significantly im-

proved these approximation ratios, obtaining a randomized, polynomial time mecha-

nism achieving a 7.91-approximation and a deterministic one with a 8.34-approximation.

Their deterministic mechanism does not run in polynomial time in general, but it can

be modified to do so for special cases at the expense of its performance (see the be-

ginning of Section 5.2). As an example, Singer (2012) followed a similar approach

to obtain a deterministic, polynomial time, 31.03-approximation mechanism for the

unweighted version of Budgeted Max Coverage, a class that we also consider in Sec-

tion 5.2. Along these lines, Horel, Ioannidis, and Muthukrishnan (2014) consider

another family of submodular functions and give a deterministic, polynomial time,

constant approximation for the so-called Experimental Design Problem, under a mild

relaxation on truthfulness. For subadditive functions, Dobzinski, Papadimitriou, and

Singer (2011) suggested a randomized O(log2 n)-approximation mechanism, and they

gave the first constant factor mechanisms for non-monotone submodular objectives,

specifically for cut functions. The factor for subadditive functions was later improved

to O
(logn

loglogn

)
by Bei et al. (2012), who also gave a randomized O(1)-approximation

mechanism for XOS functions, albeit in exponential time, and further initiated the

2
In some works on mechanism design, symmetric submodular functions have a different meaning

and refer to the case where v(S) depends only on |S|. Here we have adopted the terminology of earlier

literature on submodular optimization (e.g., Fujishige, 1983).

68 Chapter 4. Introduction

Bayesian analysis in this setting. Further improved O(1)-approximation mechanisms

for XOS functions have also been obtained in Leonardi et al. (2016). There is also

a line of related work under the large market assumption (where no participant can

significantly affect the market outcome), which allows for polynomial time mecha-

nisms with improved performance (see, e.g., Singla and Krause, 2013; Anari, Goel,

and Nikzad, 2014; Goel, Nikzad, and Singla, 2014; Balkanski and Hartline, 2016;

Jalaly and Tardos, 2017).

A somewhat complementary line of work involves the design of frugal mechanisms.

These are mechanisms where one cares for minimizing the total amount of payments

that are required by the mechanism, for finding a good solution. A series of results

has been obtained over the years on designing frugal mechanisms (see, e.g., Archer

and Tardos, 2007; Chen et al., 2010; Karlin, Kempe, and Tamir, 2005; Kempe, Salek,

and Moore, 2010). Since here we have a hard budget constraint that should never be

exceeded, results from this area do not generally transfer to our setting.

There is also a plethora of works on auctions that take budgets into account,

from the bidder’s point of view, motivated mainly by sponsored search auctions, see

among others, Borgs et al., 2005; Dobzinski, Lavi, and Nisan, 2012; Goel, Mirrokni,

and Leme, 2012 for some representative problems that have been tackled. Although

these are fundamentally different problems than ours, they do highlight the difficulties

that arise in the presence of budget constraints.

On maximization of submodular functions subject to knapsack or other type of

constraints, there is a vast literature, going back several decades (see, e.g., Nemhauser,

Wolsey, and Fisher, 1978; Wolsey, 1982). More recently, Lee et al. (2010) provided

the first constant factor randomized algorithm for submodular maximization under

k matroid and k knapsack constraints, with factors k +2+ 1
k and 5 respectively. The

problem was also studied by Gupta et al. (2010) who proposed a randomized al-

gorithm, which achieves a (4+α)-approximation
3

in case of knapsack constraints,

where α is the approximation guarantee of the unconstrained submodular maximiza-

tion. Later on, Chekuri, Vondrák, and Zenklusen (2014) suggested a randomized

3.07-approximation algorithm improving the previously known results. Finally, Feld-

man, Naor, and Schwartz (2011) and Kulik, Shachnai, and Tamir (2013) proposed

their own randomized algorithms when there are knapsack constraints, achieving an

e-approximation.
4

4.3 Preliminaries and Notation

We use A = [n] = {1,2, ...,n} to denote a set of n agents. Each agent i is associated

with a private cost ci , denoting the cost for participating in the solution. We consider

a procurement auction setting, where the auctioneer is equipped with a valuation

3
In the case of symmetric submodular functions the algorithm gives a deterministic 6-approximation.

4
The algorithm of Kulik, Shachnai, and Tamir (2013) can be derandomized without any performance

loss, but only assuming an additional oracle for the extension by expectation, say V , of the objective

function v . When only an oracle for v is available, estimation of V by sampling is required in general.

4.3. Preliminaries and Notation 69

function v : 2A →Q≥0 and a budget B > 0. For S ⊆ A, v(S) is the value derived by the

auctioneer if the set S is selected (for singletons, we will often write v(i) instead of

v({i })). Therefore, the algorithmic goal in all the problems we study is to select a set

S that maximizes v(S) subject to the constraint
∑

i∈S ci ≤ B . We assume oracle access

to v via value queries, i.e., we assume the existence of a polynomial time value oracle

that returns v(S) when given as input a set S.

Throughout our work, we consider valuation functions that are non negative,

i.e., v(S) ≥ 0 for any S ⊆ A, and we make the natural assumption that v(;) = 0. We

will focus on valuations that come from two natural classes of functions, namely

submodular and XOS functions.

Definition 4.3.1. A valuation function, defined on 2A
for some set A, is

(i) non-decreasing, if v(S) ≤ v(T) for any S ⊆ T ⊆ A.

(ii) submodular, if v(S ∪ {i })− v(S) ≥ v(T ∪ {i })− v(T) for any S ⊂ T ⊂ A, and i 6∈ T .

(iii) symmetric submodular, if it is submodular and moreover, v(S) = v(A S) for any

S ⊆ A.

(iv) XOS or fractionally subadditive, if there exist non-negative additive functions

α1, ...,αr , for some finite r , such that v(S) = max{α1(S),α2(S), ...,αr (S)}.

We note that the class XOS is a strict superclass of non-decreasing submodular

valuations. Also, it is easy to see that v cannot be both symmetric and non-decreasing

unless it is a constant function. In fact, if this is the case and v(;) = 0, then v(S) = 0,

for all S ⊆ A. We also state an alternative definition of a submodular function, which

will be useful later on.

Theorem 4.3.2 (Nemhauser, Wolsey, and Fisher (1978)). A set function v is submod-

ular if and only if for all S,T ⊆ A we have v(T) ≤ v(S)+ ∑
i∈T S

(v(S∪{i })−v(S))− ∑
i∈S T

(v(S∪
T)− v(S ∪T {i })).

We often need to argue about optimal solutions of sub-instances, from an instance

we begin with. Given a cost vector c, and a subset X ⊆ A, we denote by cX the

projection of c on X , and by c−X the projection of c on A X . We also let opt(X , v,cX ,B)

be the value of an optimal solution to the restriction of this instance on X , i.e.,

opt(X , v,cX ,B) = maxS:S⊆X ,c(S)≤B v(S). Similarly, opt(X , v,cX ,∞) denotes the value of

an optimal solution to the unconstrained version of the problem restricted on X . For

the sake of readability, we usually drop the valuation function and the cost vector,

and write opt(X ,B) or opt(X ,∞).

Finally, in Chapter 6 we make one further assumption: we assume that there is

at most one item whose cost exceeds the budget. As shown in Lemma B.1.1 and

Corollary B.1.2 in Appendix B, this is without loss of generality.

Local Optima and Local Search. Given v : 2A → Q, a set S ⊆ A is called a (1+ ε)-

approximate local optimum of v , if (1+ ε)v(S) ≥ v(S {i }) and (1+ ε)v(S) ≥ v(S ∪ {i }) for

70 Chapter 4. Introduction

every i ∈ A. When ε = 0, S is called an exact local optimum of v . Note that if v is

symmetric submodular, then S is a (1+ ε)-approximate local optimum if and only if

A S is a (1+ε)-approximate local optimum.

Approximate local optima produce good approximations in unconstrained max-

imization of general submodular functions (Feige, Mirrokni, and Vondrák, 2011).

However, here they are of interest for a quite different reason that becomes apparent

in Lemmata 6.1.1 and 6.2.1. We can efficiently find approximate local optima us-

ing the local search algorithm Approx-Local-Search of Feige, Mirrokni, and Vondrák

(2011). Note that this is an algorithm for the unconstrained version of the problem,

when there are no budget constraints.

Approx-Local-Search(A, v,ε) (Feige, Mirrokni, and Vondrák, 2011)

1 S = {i∗}, where i∗ ∈ argmaxi∈A v(i)

2 while there exists some a such that max{v(S ∪ {a}), v(S {a})} > (1+ε/n2)v(S) do

3 if v(S ∪ {a}) > (1+ε/n2)v(S) then

4 S = S ∪ {a}

5 else

6 S = S {a}

7 return S

If we care to find an exact local optimum, we can simply set ε = 0. In this case,

however, we cannot argue about the running time of the algorithm in general.

Lemma 4.3.3 (inferred from Feige, Mirrokni, and Vondrák (2011)). Given a submodu-

lar function v : 2[n] →Q≥0 and a value oracle for v , Approx-Local-Search(A, v,ε) outputs

a
(
1+ ε

n2

)
-approximate local optimum using O

(1
εn3 logn

)
calls to the oracle.

Mechanism Design. Each agent here only has his cost as private information, hence

we are in the domain of single-parameter problems. A mechanism M = (f , p) in our

context consists of an outcome rule f and a payment rule p. Given a vector of cost

declarations, b = (bi)i∈A, where bi denotes the cost reported by agent i , the outcome

rule of the mechanism selects the set f (b). At the same time, it computes payments

p(b) = (pi (b))i∈A where pi (b) denotes the payment issued to agent i . Hence, the final

utility of agent i is pi (b)− ci .

The main properties we want to ensure for our mechanisms are the following.

Definition 4.3.4. A mechanism M = (f , p) is

1. truthful, if for any cost vector c = (ci)i∈A, any player i ∈ A, and any bi : pi (c) ≥
pi (bi ,c−i). That is, reporting ci is a dominant strategy for every agent i .

2. individually rational, if pi (b) ≥ 0 for every i ∈ A, and pi (b) ≥ ci , for every i ∈ f (b).

3. budget feasible, if
∑

i∈A pi (b) ≤ B for every b.

4.3. Preliminaries and Notation 71

Compare the definition of truthfulness above with Definition 1.4.1. When referring

to randomized mechanisms, the notion of truthfulness we use is universal truthful-

ness, which means that the mechanism is a probability distribution over deterministic

truthful mechanisms.

For single-parameter problems we use the characterization by Myerson (1981)

for deriving truthful mechanisms. In particular, we say that an outcome rule f is

monotone, if for every agent i ∈ A, and any vector of cost declarations b, if i ∈ f (b),

then i ∈ f (b′
i ,b−i) for b′

i ≤ bi . This simply means that if an agent i is selected in

the outcome by declaring cost bi , then by declaring a lower cost he should still be

selected. Myerson’s lemma below implies that monotone algorithms admit truthful

payment schemes.

Lemma 4.3.5. Given a monotone algorithm f , there is a unique payment scheme p

such that (f , p) is a truthful and individually rational mechanism, given by

pi (b) =
{

supbi∈[ci ,∞){bi : i ∈ f (bi ,b−i)} , if i ∈ f (b)

0 , otherwise

Lemma 4.3.5 is known as Myerson’s lemma, and the payments are often referred

to as threshold payments, since they indicate the threshold at which an agent stops

being selected. Myerson’s lemma simplifies the design of truthful mechanisms by

focusing only on constructing monotone algorithms and not having to worry about the

payment scheme. Nevertheless, in the setting we study here budget feasibility clearly

complicates things further. For all the algorithms presented in the next sections, we

always assume that the underlying payment scheme is given by Myerson’s lemma.

73

Chapter 5

Mechanisms for Non-Decreasing Submodular

Objectives
1

We begin by optimizing existing truthful, budget-feasible mechanisms for non-de-

creasing submodular valuation functions following the analysis of Jalaly and Tardos

(2017). Then we proceed to provide a framework for designing deterministic mech-

anisms that run in polynomial time, given that the objective has a “well-behaved”

LP formulation. Note that previously known mechanisms give no such guarantee.

We apply our approach on coverage functions, a notable subclass of non-decreasing

submodular functions, in Section 5.2.1. This class has already received attention

in previous works (Singer, 2010; Singer, 2012), motivated by problems related to

influence maximization in social networks. Our mechanism reduces roughly by a

factor of 3 (from 31.03 to 10.03) the known approximation of Singer (2012) and also

generalizes it to the weighted version of coverage functions.

In the mechanisms we design for non-monotone submodular functions, in Chap-

ter 6, we repeatedly make use of truthful, budget-feasible mechanisms for non-

decreasing submodular functions as subroutines. Therefore, this chapter paves the

way for the next one.

5.1 Optimizing Existing Mechanisms

The best known truthful, budget-feasible mechanisms for non-decreasing submodu-

lar objectives are due to Chen, Gravin, and Lu (2011). Here, we follow the improved

analysis of Jalaly and Tardos (2017) for the approximation ratio of the randomized

mechanism Rand-Mech-SM of Chen, Gravin, and Lu (2011), stated below.

Rand-Mech-SM(A, v,c,B) (Chen, Gravin, and Lu, 2011)

1 Set A′ = {i | ci ≤ B} and i∗ ∈ argmaxi∈A′ v(i)

2 with probability
2
5 return i∗

3 with probability
3
5 return Greedy-SM(A, v,c,B/2)

The mechanism Greedy-SM is a greedy algorithm that picks agents according to

their ratio of marginal value over cost, given that this cost is not too large. For the sake

of presentation, we assume the agents are sorted in descending order with respect to

1
A conference paper containing a preliminary version of the results of this chapter appeared in WINE

’16 (Amanatidis, Birmpas, and Markakis, 2016a).

74 Chapter 5. Mechanisms for Non-Decreasing Submodular Objectives

this ratio. The marginal value of each agent is calculated with respect to the previous

agents in the ordering, i.e., 1 = argmax j∈A
v(j)
c j

and i = argmax j∈A\[i−1]
v([j])−v([j−1])

c j
for

i ≥ 2.

Greedy-SM(A, v,c,B/2) (Chen, Gravin, and Lu, 2011)

1 Let k = 1 and S =;
2 while k ≤ |A| and v(S ∪ {k}) > v(S) and ck ≤ B

2 · v(S∪{k})−v(S)
v(S∪{k}) do

3 S = S ∪ {k}

4 k = k +1

5 return S

Lemma 5.1.1 (inferred from Chen, Gravin, and Lu (2011) and Jalaly and Tardos

(2017)). Greedy-SM is monotone. Assuming a non-decreasing submodular function v

and the payments of Myerson’s lemma, Greedy-SM(A, v,c,B/2) is budget-feasible and

outputs a set S such that v(S) ≥ 1
3 ·opt(A,B)− 2

3 · v(i∗).

A derandomized version of Rand-Mech-SM is also provided by Chen, Gravin, and

Lu (2011). It has all the desired properties, while suffering a small loss on the ap-

proximation factor. Here, following the improved analysis of Jalaly and Tardos (2017)

for the ratio of Rand-Mech-SM, we fine-tune this derandomized mechanism to obtain

Mech-SM that has a better approximation guarantee.

Mech-SM(A, v,c,B)

1 Set A′ = {i | ci ≤ B} and i∗ ∈ argmaxi∈A′ v(i)

2 if (2+p
6) · v(i∗) ≥ opt(A {i∗},B) then

3 return i∗

4 else

5 return Greedy-SM(A, v,c,B/2)

The next theorem summarizes the properties of Rand-Mech-SM and Mech-SM.

Theorem 5.1.2 (inferred from Chen, Gravin, and Lu (2011), Jalaly and Tardos (2017),

and Lemma 6.3.3).

i. Rand-Mech-SM runs in polynomial time, it is universally truthful, individually ratio-

nal, budget-feasible, and has approximation ratio 5.

ii. Mech-SM is deterministic, truthful, individually rational, budget-feasible, and has

approximation ratio 3+p
6.

Proof. Monotonicity (and thus truthfulness and individual rationality) and budget-

feasibility of both mechanisms directly follow from Chen, Gravin, and Lu (2011).

What is left to show are the approximation guarantees.

The key fact here is the following lemma from Jalaly and Tardos (2017). Note that

the lemma also follows from Lemma 6.3.3 for ε = 0 and β = 0.5. For the rest of this

proof, S will denote the outcome of Greedy-SM(A, v,c,B/2).

Lemma 5.1.3 (Jalaly and Tardos (2017)). opt(A,B) ≤ 3 · v(S)+2 · v(i∗).

5.2. Polynomial-Time Deterministic Mechanisms 75

For Rand-Mech-SM, if X denotes the outcome of the mechanism, then directly by

Lemma 5.1.3 we have E(v(X)) ≥ 3
5 v(S)+ 2

5 v(i∗) ≥ 1
5 opt(A,B), thus proving the approxi-

mation ratio.

For Mech-SM we consider two cases:

If i∗ is returned by the mechanism, then (2+p
6)·v(i∗) ≥ opt(A {i∗},B) ≥ opt(A,B)−

v(i∗), and therefore opt(A,B) ≤ (3+p
6) · v(i∗).

On the other hand, if S is returned, then (2+p
6) ·v(i∗) < opt(A {i∗},B) ≤ opt(A,B).

Combining this with Lemma 5.1.3 we have opt(A,B) ≤ 3 · v(S) + 2
2+p6

opt(A,B) and

therefore opt(A,B) ≤ 3(2+p6)p
6

· v(S) = (3+p
6) · v(S).

5.2 Polynomial-Time Deterministic Mechanisms

In both mechanisms stated in Section 5.1, either an agent i∗ of maximum value

or Greedy-SM(A, v,c,B/2) is returned. In Rand-Mech-SM this is done according to a

probability distribution, while in Mech-SM the decision depends on the comparison of

i∗ with an optimal solution at the instance A {i∗} with budget B . As a result, Mech-SM

is not guaranteed to run in polynomial time, since we need to compute opt(A {i∗},B),

and more often than not, submodular maximization problems turn out to be NP-

hard. An obvious question here is whether we can use an approximate solution

instead, but it is not hard to see that by doing so we might sacrifice truthfulness. As

a way out, Chen, Gravin, and Lu (2011) mention that instead of opt(A {i∗},B), an

optimal solution to a fractional relaxation of the problem can be used. Intuitively,

this would maintain truthfulness because no losing agent can force the mechanism

to run Greedy-SM without lowering his bid below his current cost. This is due to

the fact that opt f is nonincreasing with respect to the bid of each agent. Although

this trick does not always make the mechanism run in polynomial time, it helps in

specific cases.

Suppose that for a specific submodular objective, the budgeted maximization

problem can be expressed as an ILP, the corresponding LP relaxation of which can be

solved in polynomial time. Further, suppose that for any instance I and any budget

B , the optimal fractional solution opt f (I ,B) is within a constant factor of the optimal

integral solution opt(I ,B). Specifically, suppose that the valuation function is such

that opt f (I ,B) ≤ ρ ·opt(I ,B), for any I and any B . Then replacing opt(A {i∗},B) by

opt f (A {i∗},B) in Mech-SM still gives a truthful, constant approximation. In fact, we

give a variant of Mech-SM below, where the constants have been appropriately tuned,

so as to optimize the achieved approximation ratio.

Theorem 5.2.1. Let v(·) be a non-decreasing submodular function, A′ = {i ∈ A | ci ≤
B}, and consider a relaxation of our problem for which we have an exact algorithm.

Moreover, suppose that opt f (A′, v,cA′ ,B) ≤ ρ ·opt(A′, v,cA′ ,B) = ρ ·opt(A, v,c,B) for any

instance, where opt f and opt denote the value of an optimal solution to the relaxed

and the original problem respectively. Then Mech-SM-frac is deterministic, truthful,

76 Chapter 5. Mechanisms for Non-Decreasing Submodular Objectives

individually rational, budget-feasible, and has approximation ratio ρ+2+
√
ρ2 +4ρ+1.

Also, it runs in polynomial time as long as the exact algorithm for the relaxed problem

runs in polynomial time.

Mech-SM-frac(A, v,c,B)

1 Set A′ = {i | ci ≤ B} and i∗ ∈ argmaxi∈A′ v(i)

2 if

(
ρ+1+

√
ρ2 +4ρ+1

)
· v(i∗) ≥ opt f (A′ {i∗},B) then

3 return i∗

4 else

5 return Greedy-SM(A, v,c,B/2)

Proof. For truthfulness and individual rationality, it suffices to show that the alloca-

tion rule is monotone, i.e., a winning agent j remains a winner if he decreases his

cost to c ′j < c j . If j = i∗ then clearly his bid is irrelevant and he remains a winner.

If j 6= i∗ and he was a winner, then by reducing the cost to c ′j , the mechanism will

still execute Greedy-SM, because opt f (A {i∗},B) is higher than before. Hence j re-

mains a winner due to the monotonicity of Greedy-SM (Lemma 5.1.1). This argument

also highlights why we cannot in general use an arbitrary approximation algorithm

instead of opt f (A {i∗},B), since we cannot predict how the solution is affected when

the cost changes from c j to c ′j .
Regarding budget feasibility, under the threshold payment scheme of Lemma

4.3.5, we either have to pay agent i∗ the whole budget, or pay the winners of Greedy-

SM(A,B/2) the maximum bid that guarantees them to win in Mech-SM-frac. We

stress that in the latter case, the payments are upper bounded by the payments in-

duced by running Greedy-SM(A,B/2) alone. This holds because opt f (A {i∗},B) is

decreasing in the cost of each agent, and so line 2 imposes an extra upper bound on

the cost that each agent can report and still be a winner. Hence, budget feasibility

follows from the budget feasibility of Greedy-SM(A,B/2) (Lemma 5.1.1).

Finally, for the approximation ratio we let α= ρ+1+
√
ρ2 +4ρ+1 and consider two

cases.

If i∗ is returned by the mechanism, then

α · v(i∗) ≥ opt f (A′ {i∗},B) ≥ opt(A′ {i∗},B) = opt(A {i∗},B) ≥ opt(A,B)− v(i∗) ,

and therefore opt(A,B) ≤ (α+1) · v(i∗).

On the other hand, if Greedy-SM(A,B/2) is executed, and S is the set of agents

returned, then

α · v(i∗) < opt f (A′ {i∗},B) ≤ ρ ·opt(A′ {i∗},B) ≤ ρ ·opt(A,B) . (5.1)

Combining (5.1) with the approximation from Lemma 5.1.1 we have

opt(A,B) ≤ 3 · v(S)+2 · v(i∗) < 3 · v(S)+ 2ρ

α
opt(A,B) ,

5.2. Polynomial-Time Deterministic Mechanisms 77

and therefore opt(A,B) ≤ 3α
α−2ρ · v(S) = (α+ 1) · v(S), where the last equality is just a

matter of calculations.

Note that when the relaxed problem is the same as the original (ρ = 1), then Mech-

SM-frac becomes Mech-SM and the two approximation ratios coincide.

5.2.1 Budgeted Max Weighted Coverage

We consider the class of weighted coverage valuations, a special class of submodular

functions. Their unweighted version was studied by Singer (Singer, 2010; Singer,

2012), motivated by the problem of influence maximization over social networks.

Imagine a company that tries to promote a new product and as part of its marketing

campaign decides to advertise (or even sell at a promotional price) the product to

selected influential nodes. Suppose that each node i , is able to influence some set of

other nodes, but this comes at a cost ci (cost of advertizing and convincing i). Then,

if there is a budget available for the campaign, the goal would be to select a set of

initial nodes respecting the budget, so as to maximize the (weighted) union of people

who are eventually influenced. This gives rise to the following problem.

Budgeted Max Weighted Coverage. Given a set of subsets {Si | i ∈ [m]} of a ground set

[n], along with costs c1,c2, ...,cm, on the subsets, weights w1, ..., wn, on the ground ele-

ments, and a positive budget B , find X ⊆ [m] so that v(X) =∑
j∈⋃

i∈X Si
w j is maximized

subject to
∑

i∈X ci ≤ B .

In the definition above, Si is the set of people that agent i can influence. On a

different note, the problem can also be thought of as a crowdsourcing problem, where

each (single-minded) worker i is able to execute only the set of tasks Si .

Singer (2012) takes an approach similar to what led to Mech-SM-frac, but sug-

gests a different polynomial time mechanism for Budgeted Max Coverage that is de-

terministic, truthful, budget feasible, and achieves approximation ratio 31.03. Here

we generalize and improve this result by showing that it is possible to have a deter-

ministic, truthful, budget feasible, polynomial time 10.03-approximate mechanism for

the Budgeted Weighted Max Coverage problem.

For all j ∈ [n] define T j = {i | j ∈ Si }. We begin with a LP formulation of this

problem, where without loss of generality we assume that ci ≤ B ,∀i ∈ [n] (otherwise

we could just discard any subsets with cost greater than B).

maximize:

∑
j∈[n]

w j z j (5.2)

subject to:

∑
i∈T j

xi ≥ z j , ∀ j ∈ [n] (5.3)∑
i∈[m]

ci xi ≤ B (5.4)

0 ≤ xi , z j ≤ 1 , ∀i ∈ [m], ∀ j ∈ [n] (5.5)

xi ∈ {0,1} , ∀i ∈ [m] (5.6)

78 Chapter 5. Mechanisms for Non-Decreasing Submodular Objectives

It is not hard to see that (5.2)-(5.6) is a natural ILP formulation for Budgeted

Max Weighted Coverage and (5.2)-(5.5) is its linear relaxation. For the rest of this

subsection, let opt(I ,B) and opt f (I ,B) denote the optimal solutions to (5.2)-(5.6) and

(5.2)-(5.5) respectively for instance I and budget B .

To show how these two are related we will use the technique of pipage rounding

(Ageev and Sviridenko, 1999; Ageev and Sviridenko, 2004). Although we do not

provide a description of the general pipage rounding technique, the proof of Theorem

5.2.2 below is self-contained. We should note here that Ageev and Sviridenko (2004)

use the above linear programs (as well as the nonlinear program in the proof of Lemma

5.2.2) to obtain an
e

e−1 -approximation LP-based algorithm that uses pipage rounding

on a number of different instances of the problem.
2

However, in their algorithm

opt(I ,B) is never compared directly to opt f (I ,B), and therefore we cannot get the

desired bound from there.

Theorem 5.2.2. Given the fractional relaxation (5.2)-(5.5) for Budgeted Max Weighted

Coverage, we have that for any instance I and any budget B

opt f (I ,B) ≤ 2e

e −1
·opt(I ,B) .

Proof. Given any feasible solution x, z to (5.2)-(5.5), the value of (5.2) is upper bounded

by L(x) =∑
j∈[n] w j ·min{1,

∑
i∈T j

xi }, since z j ≤ min{1,
∑

i∈T j
xi } for any j ∈ [n]. In partic-

ular, if x∗, z∗
is an optimal (fractional) solution to (5.2)-(5.5), then the value of (5.2) is

exactly L(x∗) = opt f (I ,B).

Next we consider the nonlinear program

maximize: F (x) = ∑
j∈[n]

w j

(
1− ∏

i∈T j

(1−xi)
)

(5.7)

subject to:

∑
i∈[m]

ci xi ≤ B (5.8)

0 ≤ xi ≤ 1 ,∀i ∈ [m] (5.9)

and we observe that F (x) ≥ (1−1/e)L(x) for any feasible vector x. This follows from the

fact that (1− (1−1/k)k) ≥ (1−1/e) for any k ≥ 1, and the following inequality, derived

in Goemans and Williamson (1994) (Lemma 3.1 in their work):

1− ∏
i∈[k]

(1− yi) ≥ (1− (1−1/k)k)min
{

1,
∑

i∈[k]
yi

}
.

So, if x∗, z∗
is an optimal solution to (5.2)-(5.5) we have

F (x∗) ≥ (1−1/e)L(x∗) = (1−1/e)opt f (I ,B) .

However, x∗
may have several fractional coordinates. Our next step is to transform

x∗
to a vector x ′

that has at most one fractional coordinate and at the same time

2
In fact, Ageev and Sviridenko (2004) study the hitting set version of this problem, but both problems

have essentially the same linear program formulation.

5.2. Polynomial-Time Deterministic Mechanisms 79

F (x ′) ≥ F (x∗). To this end, we show how to reduce the fractional coordinates by (at

least) one in any feasible vector with at least two such coordinates.

Consider a feasible vector x, and suppose xi and x j are two non integral coor-

dinates. Let xi , j
ε be the vector we get if we replace xi by xi +ε and x j by x j −εci /c j

and leave every other coordinate of x the same. Note that the function F̄ (ε) = F (xi , j
ε),

with respect to ε, is either linear or a polynomial of degree 2 with positive leading

coefficient. That is, F̄ (ε) is convex.

Notice now that xi , j
ε always satisfies the budget constraint (5.8), and also satisfies

(5.9) as long as ε ∈ [
max

{−xi , (x j −1)c j /ci
}

,min
{
1−xi , x j c j /ci

}]
. Due to convexity,

F̄ (ε) attains a maximum on one of the endpoints of this interval, say at ε∗. Moreover,

at either endpoint at least one of xi +ε∗ and x j −ε∗ci /c j is integral. That is, xi , j
ε∗ has

at least one more integral coordinate than x and F (xi , j
ε∗) ≥ F (x).

Hence, initially x ← x∗
. As long as there exist two non integral coordinates xi and

x j we set x ← xi , j
ε∗ as described above. This procedure runs for at most n−1 iterations,

and outputs a feasible vector x ′
that is integral or almost integral and F (x ′) ≥ F (x∗).

At this point we should note that when all the xi s are integral then the objectives

(5.2) and (5.7) have the same value if we set z j = min{1,
∑

i∈T j
xi } for all j ∈ [n]. Specif-

ically, if x is any feasible integral vector, we have F (x) ≤ opt(I ,B). So, if x ′
is integral

then

opt f (I ,B) = L(x∗) ≤ e

e −1
·F (x∗) ≤ e

e −1
·F (x ′) ≤ e

e −1
·opt(I ,B) ,

and we are done. Thus, suppose that x ′
has exactly one fractional coordinate, say xr .

Let xi
be the vector we get if we set xr to i ∈ {0,1} and leave every other coordinate of x ′

the same. Note that x1−x0
corresponds to the vector that has 1 in the r th coordinate

and 0 everywhere else. Clearly, opt(I ,B) ≥ max
{
F (x0),F (x1 −x0)

}
(where x1 − x0

is

feasible since we have discarded subsets with ci > B). Moreover, F on integral vectors

is submodular, and hence subadditive, therefore F (x1)−F (x0) ≤ F (x1−x0). Finally, it is

easy to see that F is increasing with respect to any single coordinate, so F (x1) ≥ F (x ′).
Combining all the above we get

opt f (I ,B) = L(x∗) ≤ e

e −1
·F (x∗) ≤ e

e −1
·F (x ′) ≤ e

e −1
·F (x1)

≤ e

e −1
· (F (x0)+F (x1 −x0)

)≤ 2e

e −1
·opt(I ,B) ,

thus completing the proof.

Combining Theorems 5.2.1 and 5.2.2 we get the following result.

Corollary 5.2.3. There exists a deterministic, truthful, individually rational, budget

feasible 10.03-approximate mechanism for Budgeted Max Weighted Coverage that runs

in polynomial time.

81

Chapter 6

Going Beyond Monotonicity: Symmetric

Submodular Objectives
1

The main focus of this chapter is on symmetric submodular functions, a promi-

nent subclass of non-monotone submodular functions. As mentioned in Queyranne

(1998), cut functions form a canonical example of this class. Consequently, we use

the budgeted Max Cut problem throughout the chapter as an illustrative example of

how our more general approach could be refined for concrete objectives that have a

well-behaved LP formulation.

In Section 6.1 we obtain a purely algorithmic result, namely a
2e

e−1 -approximation

for symmetric submodular functions under a budget constraint. We believe this is

of independent interest, as it is the best known factor achieved by a deterministic

algorithm (there exists already a randomized e-approximation) assuming only a value

oracle for the objective function.

In Sections 6.2 and 6.3 we propose truthful, budget feasible mechanisms for ar-

bitrary symmetric submodular functions, where previously known results regarded

only randomized exponential mechanisms. We manage to significantly improve the

known approximation ratios of such objectives by providing both randomized and de-

terministic mechanisms of exponential time. Moreover, we extend the general scheme

of Section 5.2 for producing constant factor approximation mechanisms that run in

polynomial time when the objective function is well-behaved. These results provide

partial answers to some of the open questions discussed in Dobzinski, Papadimitriou,

and Singer (2011).

In the same sections we also pay particular attention on the weighted and un-

weighted versions of Budgeted Max Cut. For the weighted version we obtain the

first deterministic polynomial time mechanism with a 27.25-approximation (where

only an exponential randomized algorithm was known with a 768-approximation),

while for the unweighted version we improve the approximation ratio for polynomial

randomized mechanisms, from 564 down to 10, and for polynomial deterministic

mechanisms, from 5158 down to 27.25.

Our contributions in mechanism design are summarized in Table 6.1. We also

stress that our mechanisms for general symmetric submodular functions use the

1
The results of this chapter appear in Amanatidis, Birmpas, and Markakis (2017).

82 Chapter 6. Going Beyond Monotonicity: Symmetric Submodular Objectives

value query model for oracle access to v , which is a much weaker requirement than

the demand query model assumed in previous works.

Regarding the technical contribution of our work, the core idea of our approach

is to exploit a combination of local search with mechanisms for non-decreasing sub-

modular functions. The reason local search is convenient for symmetric submodular

functions is that it produces two local optima, and we can then prove that the function

v(·) is non-decreasing within each local optimum. This allows us to utilize mecha-

nisms for non-decreasing submodular functions on the two subsets and then prove

that one of the two solutions will attain a good approximation. The running time is

still an issue under this approach, since finding an exact local optimum is not guar-

anteed to terminate fast. However, even by finding approximate local optima, within

each of them the objective remains almost non-decreasing in a certain sense. This

way we are still able to appropriately adjust our mechanisms and obtain provable

approximation guarantees. To the best of our knowledge, this is the first time that

this “robustness under small deviations from monotonicity’ ’ approach is used to exploit

known results for monotone objectives.

symmetric submod. unweighted cut weighted cut

rand. determ. rand. determ. rand. determ.

Previous work 768∗ †
– 564 5158 768∗ †

–

This chapter 10∗ 10.90∗
, (1+ρ)

(
2+ρ+

√
ρ2+4ρ+1

)
10 27.25 27.25

Table 6.1: A summary of our results on mechanisms. The asterisk (∗) indicates

that the corresponding mechanism runs in superpolynomial time. The dagger (†)

indicates that previously known results do not directly apply here; see Remark 6.0.1.

The factor ρ is an upper bound on the ratio of the optimal fractional solution to the

integral one, assuming that we can find the former in polynomial time.

The factor 768 is due to Chen, Gravin, and Lu, 2011, while the factors 564 and 5158

are due to Dobzinski, Papadimitriou, and Singer, 2011.

Remark 6.0.1. In Bei et al. (2012) the proposed mechanisms regard XOS and non-

decreasing subadditive objectives, but it is stated that their results can be extended

for general subadditive functions as well. This is achieved by defining v̂(S) = maxT⊆S v(T).

It is easily seen that v̂ is non-decreasing, subadditive, and any solution that max-

imizes v is also an optimal solution for v̂ . Although this is true for subadditive

functions, it does not hold for submodular functions. In particular, if v is submodu-

lar, then v̂ is not necessarily submodular. Therefore the results of Chen, Gravin, and

Lu (2011) cannot be extended to our setting, even when time complexity is not an is-

sue. An example of how v̂ may fail to be submodular when v is a cut function is given

in Appendix B.2, where we also discuss how it can be derived from Gupta, Nagarajan,

and Singla (2017) that in such cases v̂ is actually XOS. This also implies that the

best previously known approximation factor for the class of symmetric submodular

functions was indeed 768 (inherited by the use of v̂).

Recall that for this chapter we assume that there is at most one item whose cost

exceeds the budget. This is without loss of generality, as shown in Appendix B.1.

6.1. The Core Idea: A Simple Algorithm 83

6.1 The Core Idea: A Simple Algorithm for Symmetric Sub-

modular Objectives

This section deals with the algorithmic version of the problem: given a symmetric

submodular function v , the goal is to find S ⊆ A that maximizes v(S) subject to the

constraint
∑

i∈S ci ≤ B . The main result is a deterministic
2e

e−1 -approximation algorithm

for symmetric submodular functions. For this section only, the costs and the budget

are assumed to be integral.

Since our function is not monotone, we cannot directly apply the result of Sviri-

denko (2004), which gives an optimal simple greedy algorithm for non-decreasing

submodular maximization subject to a knapsack constraint. Instead, our main idea

is to combine appropriately the result of Sviridenko (2004) with the local search

used for unconstrained symmetric submodular maximization (Feige, Mirrokni, and

Vondrák, 2011). At a high level, what happens is that local search produces an ap-

proximate solution S for the unconstrained problem, and while this does not look

related to our goal at first sight, v is “close to being non-decreasing” on both S and

A S. This becomes precise in Lemma 6.1.1 below, but the point is that running a

modification of the greedy algorithm of Sviridenko (2004), on both S and A S will now

produce at least one good enough solution.

LS-Greedy(A, v,c,B ,ε)

1 S =Approx-Local-Search(A, v,ε/4)

2 T1 =Greedy-Enum-SM(S, v,cS ,B)

3 T2 =Greedy-Enum-SM(A S, v,cA S ,B)

4 Let T be the best solution among T1 and T2

5 return T

The first component of our algorithm is the local search algorithm of Feige, Mir-

rokni, and Vondrák (2011) (see Section 4.3). By Lemma 4.3.3 and the fact that v

is symmetric, both S and A S are
(
1+ ε

4n2

)
-approximate local optima. We can now

quantify the crucial observation that v is close to being non-decreasing within the

approximate local optima S and A S. Actually, we only need this property on the

local optimum that contains the best feasible solution.

Lemma 6.1.1. Let S be a
(
1+ ε

4n2

)
-approximate local optimum and consider

X ∈ argmax
Z∈{S,A S}

opt(Z ,B) .

Then, for every T (X and every i ∈ X T , we have v(T ∪ {i })− v(T) >− ε
n opt(X ,B).

Before proving Lemma 6.1.1, we begin with a simple fact and a useful lemma. We

note that Fact 6.1.2 and Lemma 6.1.3 below require only subadditivity. Submodu-

larity is used later, within the proof of Lemma 6.1.1.

Fact 6.1.2. For any S ⊆ A, max{opt(S,B),opt(A S,B)} ≥ 0.5opt(A,B) since opt(S,B)+
opt(A S,B) ≥ opt(A,B) by subadditivity.

84 Chapter 6. Going Beyond Monotonicity: Symmetric Submodular Objectives

Lemma 6.1.3. For any S ⊆ A, opt(S,∞) ≤ 2n ·opt(A,B).

Proof. Recall that |{i ∈ A | ci > B}| ≤ 1. Let S∗ ⊆ S be such that v(S∗) = opt(S,∞). By

subadditivity we have opt(S,∞) = v(S∗) ≤∑
i∈S∗ v(i). Consider three cases.

If {i ∈ A | ci > B} = ;, then by the fact that every singleton is a feasible solution we

have
∑

i∈S∗ v(i) ≤ n ·maxi∈A v(i) ≤ n ·opt(A,B).

If {i ∈ A | ci > B} = {x} * S∗
, then every singleton in A {x} is a feasible solution, and

like before we have
∑

i∈S∗ v(i) ≤ (n −1) ·maxi∈A {x} v(i) ≤ (n −1) ·opt(A,B).

If {i ∈ A | ci > B} = {x} ⊆ S∗
, then we need to bound v(x). Since v is symmetric we

have v(x) = v(A {x}) ≤ ∑
i∈A {x} v(i) ≤ (n −1) ·maxi∈A {x} v(i). Therefore, by using again

that every singleton in A {x} is a feasible solution, we have
∑

i∈S∗ v(i) ≤ v(x)+ (n −1) ·
maxi∈A {x} v(i) ≤ (2n −2) ·maxi∈A {x} v(i) ≤ 2n ·opt(A,B).

Proof of Lemma 6.1.1 : By Fact 6.1.2 we have opt(X ,B) ≥ 0.5opt(A,B). Let T ⊆
X {i } for some i ∈ X . By submodularity we have v(T ∪ {i })− v(T) ≥ v(X)− v(X {i }).

Since S is a
(
1+ ε

4n2

)
-approximate local optimum and v is symmetric, X is also a(

1+ ε
4n2

)
-approximate local optimum. As a result, v(X {i }) ≤ (

1+ ε
4n2

)
v(X) and thus

v(X)− v(X {i }) ≥ − ε
4n2 v(X) ≥ − ε

4n2 opt(X ,∞) ≥ − ε
2n opt(A,B) ≥ − ε

n opt(X ,B), where the

second to last inequality follows from Lemma 6.1.3. �

The second component of LS-Greedy is an appropriate modification of the greedy

algorithm of Sviridenko (2004) for non-monotone submodular functions. It first enu-

merates all solutions of size at most 3. Then, starting from each 3-set, it builds a

greedy solution, and it outputs the best among these Θ(n3) solutions. Here this idea

is adjusted for non-monotone functions.

Greedy-Enum-SM(A, v,c,B)

1 Let S1 be the best feasible solution of cardinality at most 3 (by enumerating them all)

2 S2 =;
3 for every U ⊆ A with |U | = 3 do

4 S0 =U , t = 1, A0 = A U

5 while At−1 6= ; do

6 Find θt = max
i∈At−1

v(S t−1 ∪ {i })− v(S t−1)

ci
, and let it be an element of At−1

that

attains θt

7 if θt ≥ 0 and
∑

i∈St−1∪{it } ci ≤ B then

8 S t = S t−1 ∪ {it }

9 else

10 S t = S t−1

11 At = At−1 {it }

12 t = t +1

13 if v(S t−1) > v(S2) then

14 S2 = S t−1

15 return S ∈ argmax
X∈{S1,S2}

v(X)

6.1. The Core Idea: A Simple Algorithm 85

By Fact 6.1.2, at least one of S and A S contains a feasible solution of value at

least 0.5opt(A,B). Lemma 6.1.1 guarantees that in this set, v is very close to a non-

decreasing submodular function. This is sufficient for Greedy-Enum-SM to perform

almost as well as if v was non-decreasing.

Theorem 6.1.4. For any ε> 0, algorithm LS-Greedy achieves a
(2e

e−1 +ε
)
-approximation.

Proof. Recall that Greedy-Enum-SM runs on both S and A S and LS-Greedy returns

the best solution of these two. We may assume, without loss of generality that

opt(S,B) = max{opt(S,B),opt(A S,B)} (the case for A S being symmetric). By Fact

6.1.2 we have opt(S,B) ≥ 0.5opt(A,B). So, it suffices to show that running Greedy-

Enum-SM on S outputs a set of value at least (1−1/e −ε)opt(S,B).

In what follows we analyze the approximation ratio achieved by Greedy-Enum-

SM(S, v,c,B) with respect to opt(S,B). For this, we follow closely the proof of the main

result in Sviridenko (2004).

If there is an optimal solution for our problem restricted on S, of cardinality one,

two or three, then the set S1 of Greedy-Enum-SM will be such a solution. Hence,

assume that the cardinality of any optimal solution is at least four and let S∗
be

such a solution. If necessary, reorder the elements of S∗ = { j1, . . . , j|S∗|} so that j1 =
argmax` v({ j`}), and jk+1 = argmax`>k

[
v({ j1, . . . , jk , j`})− v({ j1, . . . , jk })

]
.

Let Y = { j1, j2, j3}. For notational convenience, we will use the function g (·) =
v(·)− v(Y). It is straightforward that g (·) is submodular. Moreover, the following fact

follows from Sviridenko (2004).

Fact 6.1.5. g (X ∪ {i })− g (X) ≤ 1
3 v(Y), for any Y ⊆ X ⊆ S and i ∈ S∗ X .

Consider the execution of the greedy algorithm with initial set U = Y . Let t∗+1 be

the first time when an element it∗+1 ∈ S∗
is not added to S t∗

. In fact, we assume that

t∗+1 is the first time when S t = S t−1
. (To see that this is without loss of generality, if

there is some time τ< t∗+1 such that iτ is not added to Sτ−1
, then—by the definition

of t∗+1—it must be the case that iτ ∉ S∗
. But then, we may consider the instance

(S {iτ}, v,cS {iτ},B) instead. We have v(S∗) = opt(S {iτ},B) = opt(S,B) and the greedy

solution constructed in the iteration where S0 = Y is exactly the same as before.) We

are going to distinguish two cases.

Case 1. For all t ∈ [t∗],θt ≥ 0, but θt∗+1 < 0. Using Theorem 4.3.2 for S∗
and S t∗

we

have

g (S∗) ≤ g (S t∗)+ ∑
i∈S∗ S t∗

(g (S t∗ ∪ {i })− g (S t∗))− ∑
i∈S t∗ S∗

(g (S t∗ ∪S∗)− g (S t∗ ∪S∗ {i }))

= g (S t∗)+ ∑
i∈S∗ S t∗

(v(S t∗ ∪ {i })− v(S t∗))− ∑
i∈S t∗ S∗

(v(S t∗ ∪S∗)− v(S t∗ ∪S∗ {i }))

≤ g (S t∗)+ ∑
i∈S∗ S t∗

ciθt∗+1 −|S t∗ S∗|
(
− ε

n
opt(S,B)

)
≤ g (S t∗)+εopt(S,B) ,

86 Chapter 6. Going Beyond Monotonicity: Symmetric Submodular Objectives

Here, the second to last inequality holds by Lemma 6.1.1 and by the assumptions

we have made. That is, for every i ∈ S∗ S t∗
, we have that i ∈ At∗

, since we assumed

that t∗ + 1 is the first time when S t = S t−1
, hence up until time t∗, At∗

contains

all the agents apart from S t∗
. This implies that for every i ∈ S∗ S t∗

, we have that

v(S t∗ ∪ {i })− v(S t∗) ≤ ciθt∗+1, by the definition of θt∗+1.

Therefore, we can conclude that

v(S t∗) = v(Y)+ g (S t∗) ≥ v(Y)+ g (S∗)−εopt(S,B) = (1−ε)opt(S,B) .

Case 2. For all t ∈ [t∗+ 1],θt ≥ 0, but
∑

i∈S t∗∪{i t∗+1} ci > B while
∑

i∈S t∗ ci ≤ B . Using

Theorem 4.3.2 for S∗
and each of S t

, t ∈ [t∗], as well as Lemma 6.1.1, we have

g (S∗) ≤ g (S t)+ ∑
i∈S∗ S t

(g (S t ∪ {i })− g (S t))− ∑
i∈S t S∗

(g (S t ∪S∗)− g (S t ∪S∗ {i }))

= g (S t)+ ∑
i∈S∗ S t

(v(S t ∪ {i })− v(S t))− ∑
i∈S t S∗

(v(S t ∪S∗)− v(S t ∪S∗ {i }))

≤ g (S t)+ ∑
i∈S∗ S t

(v(S t ∪ {i })− v(S t))−|S t S∗|
(
− ε

n
opt(S,B)

)
≤ g (S t)+ ∑

i∈S∗ S t

(v(S t ∪ {i })− v(S t))+εopt(S,B) ,

and therefore

g (S∗)−εopt(S,B) ≤ g (S t)+ ∑
i∈S∗ S t

(v(S t ∪ {i })− v(S t))

≤ g (S t)+ ∑
i∈S∗ S t

ciθt+1

≤ g (S t)+
(
B − ∑

i∈Y
ci

)
θt+1 ,

for all t ∈ [t∗].

For the last part of the proof we need the following inequality of Wolsey (1982).

Theorem 6.1.6 (Wolsey (1982)). Let k and s be arbitrary positive integers, and ρ1, . . . ,ρk

be arbitrary reals with z1 = ∑k
i=1ρi and z2 = mint∈[k]

(∑t−1
i=1 ρi + sρt

) > 0. Then z1/z2 ≥
1− (1−1/s)k ≥ 1−e−

k
s .

For any τ, define Bτ =∑τ
t=1 ci t , and let k = Bt∗+1 and s = B −∑

i∈Y ci . We also define

ρ1, . . . ,ρk as follows; for i ≤ c1,ρi = θ1 and for Bτ < i ≤ Bτ+1,ρi = θτ+1. It is easy to see

that g (S t∗ ∪ {it∗+1}) =∑t∗+1
t=1 ci tθi t =

∑k
i=1ρi and similarly g (S t) =∑τ

t=1 ci tθi t =
∑Bτ

i=1ρi .

As noted in Sviridenko (2004), since the ρi s are nonnegative we have

min
t∈[k]

(
t−1∑
i=1

ρi + sρt

)
= min
τ∈[t∗]

(
Bτ∑

i=1
ρi + sρBτ+1

)
,

and therefore

g (S∗)−εopt(S,B) ≤ min
t∈[k]

(
t−1∑
i=1

ρi + sρt

)
.

6.2. A First Take on Mechanism Design 87

So, as a direct application of Theorem 6.1.6 we have

g (S t∗ ∪ {it∗+1})

g (S∗)−εopt(S,B)
≥ 1−e−

k
s > 1−e−1 .

Finally, using the above inequality and Fact 6.1.5, we get

v(S t∗) = v(Y)+ g (S t∗) = v(Y)+ g (S t∗ ∪ {it∗+1})− (g (S t∗ ∪ {it∗+1})− g (S t∗))

≥ v(Y)+ (1−e−1)g (S∗)− (1−e−1)εopt(S,B)− (v(S t∗ ∪ {it∗+1})− v(S t∗))

≥ v(Y)+ (1−e−1)g (S∗)−εopt(S,B)− 1

3
v(Y)

≥ (1−e−1 −ε)opt(S,B) .

Since in both cases the final output T ∗
of the algorithm has value at least v(S t∗),

this implies that

v(T ∗) ≥ (1−e−1 −ε)opt(S,B) ≥ 1−e−1 −ε
2

opt(A,B) >
(e −1

2e
−ε

)
opt(A,B) ,

thus concluding the analysis of the performance of the algorithm.

Theorem 6.1.4 suggests that a straightforward composition of two well known

greedy algorithms achieves a good approximation for any symmetric submodular

objective. We believe this is of independent interest and could be useful for other

problems involving submodular optimization. From a mechanism design perspective,

however, algorithm LS-Greedy fails to be monotone and thus it cannot be used di-

rectly in the subsequent sections. In the next two sections, we remedy the problem

by removing the enumeration part of the algorithm.

6.2 A First Take on Mechanism Design

Utilizing the algorithmic approach of Section 6.1 to get truthful mechanisms is not

straightforward. One of the reasons is that LS-Greedy is not monotone. We note that

the algorithm Greedy-Enum-SM without the enumeration part is monotone even for

general objectives, but, to further complicate things, it is not guaranteed to be budget-

feasible or have a good performance anymore. Instead of computing approximate local

optima like in Section 6.1, in this section we bypass most issues by computing exact

local optima. The highlights of this simplified approach are polynomial mechanisms

for unweighted cut functions with greatly improved guarantees.

The price we have to pay, however, is that in general, finding exact local optima

is not guaranteed to run in polynomial time (Schäffer and Yannakakis, 1991). Still,

these mechanisms deepen our understanding of the problem. As mentioned in the

Introduction, the problem seems to remain hard even when the running time is not

an issue, and many existing mechanisms for various classes of functions are not

polynomial. In particular, there are no better known mechanisms—even running in

88 Chapter 6. Going Beyond Monotonicity: Symmetric Submodular Objectives

exponential time—for symmetric submodular objectives. We are going to deal further

with the issue of running time in Section 6.3.

Below we give a randomized mechanism that reduces the known factor of 768

down to 10, as well as the first deterministic O(1)-approximation mechanism for

symmetric submodular objectives. In both mechanisms, local search produces a

local maximum S for the unbudgeted problem and then the budgeted problem is

solved optimally on both S and A S. As shown in Lemma 6.2.1, v is non-decreasing

on both S and A S. Thus, running one of the mechanisms Rand-Mech-SM or Mech-

SM, as described in the beginning of the chapter, on T ∈ argmaxX∈{S,A S} opt(X ,B),

directly implies a good solution. Since the resulting randomized and deterministic

mechanisms are very similar, we state them together for succinctness.

Rand-Mech-SymSM(A, v,c,B) (resp. Det-Mech-SymSM(A, v,c,B))

1 S =Approx-Local-Search(A, v,0) //find an exact local optimum

2 if opt(S,B) ≥ opt(A S,B) then

3 return Rand-Mech-SM(S, v,cS ,B) (resp. Mech-SM(S, v,cS ,B))

4 else

5 return Rand-Mech-SM(A S, v,cA S ,B) (resp. Mech-SM(A S, v,cA S ,B))

The next simple lemma is crucial for the performance of both mechanisms for

arbitrary submodular functions, and it shows how local search helps us exploit known

results for non-decreasing submodular functions.

Lemma 6.2.1. Let A be a set and v be an arbitrary submodular function defined on 2A
.

If S is a local maximum of v , then v is submodular and non-decreasing when restricted

on 2S
.

Proof. The fact that v is submodular when restricted on 2S
is trivial. Suppose now

that the statement is not true and that v is not non-decreasing on 2S
. That is, there

exist T,T ′ ⊆ S such that T (T ′
and v(T) > v(T ′). Let T ′ T = {i1, . . . , ir }.

By Theorem 4.3.2 we have

v(T) ≤ v(T ′)− ∑
j∈[r]

(v(T ′)− v(T ′ {i j })) ,

and therefore ∑
j∈[r]

(v(T ′)− v(T ′ {i j })) ≤ v(T ′)− v(T) < 0.

We conclude that there is some ` ∈ [r] such that v(T ′)− v(T ′ {i`}) < 0. Then, by

submodularity and the fact that T ′ {i`} ⊆ S {i`}, we get

v(S)− v(S {i`}) ≤ v(T ′)− v(T ′ {i`}) < 0.

But then v(S {i`}) > v(S), which contradicts the fact that S is a local maximum of v .

So, it must be the case that v is non-decreasing on the subsets of S.

6.2. A First Take on Mechanism Design 89

Since v is symmetric, if S is a local optimum, so is A S. Lemma 6.2.1 suggests

that we can use the mechanism Rand-Mech-SM (resp. Mech-SM) on S and A S, to

get the following implications.

Theorem 6.2.2. i. The mechanism Rand-Mech-SymSM is universally truthful, individ-

ually rational, budget-feasible, and has approximation ratio 10.

ii. The mechanism Det-Mech-SymSM is deterministic, truthful, individually rational,

budget-feasible, and has approximation ratio 6+2
p

6.

Proof. The fact that both mechanism Rand-Mech-SymSM and Det-Mech-SymSM are

budget-feasible follows from the budget-feasibility of Rand-Mech-SM and Mech-SM

respectively, established in Chen, Gravin, and Lu (2011).

For truthfulness and individual rationality, it suffices to show that the allocation

rule is monotone. Let us look first at Det-Mech-SymSM. Consider an agent i with

true cost ci in an instance I where i is included in the winning set. Note first that

the local search step is not affected by the costs, hence no player can influence the

local optimum. Suppose now that it was the case that opt(S,B) ≥ opt(A S,B), hence

i ∈ S. If player i now declares a lower cost, then the optimal solution within S can only

get better, hence the mechanism will run Mech-SM on S as before. Since Mech-SM

is monotone, player i will again be selected in the solution. We conclude that the

outcome rule is monotone and Det-Mech-SymSM is truthful.

To prove that the randomized mechanism Rand-Mech-SymSM is universally truth-

ful we use similar arguments. We fix the random bits of the mechanism and we con-

sider a winning agent i like before. Again, no player can influence the outcome of local

search. Suppose it is the case that opt(S,B) ≥ opt(A S,B), hence i ∈ S. If i declares a

lower cost, then the optimal solution within S improves, and Rand-Mech-SM will still

run on S. Since Rand-Mech-SM is universally truthful, it is monotone given the ran-

dom bits, and player i will again be a winner. We conclude that Rand-Mech-SymSM

is universally truthful.

To argue now about the approximation ratio, suppose that we are in the case

that opt(S,B) ≥ opt(A S,B) (the other case being symmetric). We know by Fact 6.1.2

that opt(S,B) ≥ 0.5 ·opt(A,B). Hence, since we run either Mech-SM or Rand-Mech-

SM on S, we will get twice their approximation ratio. This implies a ratio of 10 for

Rand-Mech-SymSM and a ratio of 6+2
p

6 for Det-Mech-SymSM.

Lower bounds on the approximability have been obtained by Chen, Gravin, and Lu

(2011) for additive valuations. Since additive functions are not symmetric, these lower

bounds do not directly apply here. However, it is not hard to construct symmetric

submodular functions that give the exact same bounds.

Lemma 6.2.3. Independent of complexity assumptions, there is no deterministic (resp.

randomized) truthful, budget feasible mechanism that can achieve an approximation

ratio better than 1+p
2 (resp. 2).

90 Chapter 6. Going Beyond Monotonicity: Symmetric Submodular Objectives

Proof. The lower bounds of Chen, Gravin, and Lu (2011) are both for additive ob-

jectives (Knapsack). It suffices to show that given an instance (A, v,c,B) of Knap-

sack, we can construct an equivalent (A′, v ′,c′,B ′) instance of Budgeted Max Weighted

Cut. This is straightforward. Consider a graph G with vertex set A ∪ x and edge set

{(i , x) | i ∈ A}. For i ∈ A, vertex i has cost c ′i = ci , while vertex x has cost c ′x = B +1.

Edge (i , x) has weight v(i). Finally, for S ⊆ A∪x, v ′(S) is equal to the weight of the cut

defined by S.

This correspondence between items and vertices creates a natural correspondence

between solutions. It is clear that each feasible solution of the Knapsack instance

essentially defines a feasible solution to the Budgeted Max Weighted Cut instance

of the same value and vice versa. In particular opt(A, v,c,B) = opt(A′, v ′,c′,B). We

conclude that any lower bound for Knapsack gives a lower bound for Budgeted Max

Weighted Cut.

Clearly, both mechanisms presented in this section require superpolynomial time

in general (due to their first two lines), unless P = N P . In both cases, instead of

opt(·,B) we could use the optimal solution of a fractional relaxation of the problem,

at the expense of somewhat worse guarantees. This does not completely resolve the

problem, although this way local search becomes the sole bottleneck. For certain ob-

jectives, however, we can achieve similar guarantees in polynomial time. Unweighted

cut functions are the most prominent such example, and it is the focus of the next

subsection.

6.2.1 Unweighted Cut Functions

We begin with the definition of the problem when v is a cut function:

Budgeted Max Weighted Cut. Given a complete graph G with vertex set V (G) = [n],

non-negative weights wi j on the edges, non-negative costs ci on the nodes, and a

positive budget B , find X ⊆ [n] so that v(X) = ∑
i∈X

∑
j∈[n] X wi j is maximized subject

to
∑

j∈X c j ≤ B .

For convenience, we assume the problem is defined on a complete graph as we can

use zero weights to model any graph. In this subsection, we focus on the unweighted

version, where all weights are equal to either 0 or 1. We call this special case Budgeted

Max Cut. The weighted version is considered in Subsection 6.3.1.

The fact that local search takes polynomial time to find an exact local optimum

for the unweighted version (Kleinberg and Tardos, 2006) does not suffice to make

Rand-Mech-SymSM a polynomial time mechanism, since one still needs to compute

opt(S,B) and opt(A S,B). However, a small modification so that Rand-Mech-SM(S,B)

and Rand-Mech-SM(A S,B) are returned with probability 1/2 each yields a randomized

10-approximate polynomial time mechanism.

6.2. A First Take on Mechanism Design 91

Rand-Mech-UCut(A, v,c,B)

1 S =Approx-Local-Search(A, v,0) //find an exact local optimum

2 with probability 1/2 return Rand-Mech-SM(S, v,cS ,B)

3 with probability 1/2 return Rand-Mech-SM(A S, v,cA S ,B)

Theorem 6.2.4. Rand-Mech-UCut is a randomized, universally truthful, individually

rational, budget-feasible mechanism for Budgeted Max Cut that has approximation

ratio 10 and runs in polynomial time.

Proof. Clearly, for the unweighted version of Max Cut, the mechanism runs in polyno-

mial time. The fact that the mechanism is truthful, individually rational and budget

feasible follows from the same arguments as in the proof of Theorem 6.2.2.

Finally, let

XS =Greedy-SM(S, v,cS ,B/2), X A S =Greedy-SM(A S, v,cA S ,B/2),

iS ∈ argmax
{i∈S |ci≤B}

v(i), and i A S ∈ argmax
{i∈A S |ci≤B}

v(i) .

Since we run mechanism Rand-Mech-SM with probability 1/2 on S and A S, it

is not hard to see that each of XS and X A S is returned with probability 3/10, while

each of iS and i A S is returned with probability 2/10. If X denotes the outcome of the

mechanism, then using subadditivity and Lemma 5.1.3, we get

E(v(X)) = 3

10
v(XS)+ 2

10
v(iS)+ 3

10
v(X A S)+ 2

10
v(i A S)

≥ 1

10
opt(S,B)+ 1

10
opt(A S,B)

≥ 1

10
opt(A,B) ,

thus establishing an approximation ratio of 10.

To obtain a deterministic mechanism for Budgeted Max Cut, we will use an LP-

based approach, similar to the one used in Subsection 5.2.1, and we will run Mech-

SM-frac on an appropriate local maximum. Recall that for this we will first need

to compare the value of an optimal solution of a fractional relaxation to the value

of an optimal solution of the original problem. Ageev and Sviridenko (1999) studied

a different Max Cut variant, but we follow a similar approach to obtain the desired

bound for our problem as well. We begin with a linear program formulation of the

problem. Our analysis is carried out for the weighted version of the problem, as we

are going to reuse some results in Subsection 6.3.1, which deals with weighted cut

functions. To be more precise, we want to argue about a variant of the problem where

we may only be allowed to choose the solution from a specified subset of A. That

is, we formulate below the sub-instance I = (X , v,cX ,B) of (A, v,c,B), where in fact

X ⊆ A′ = {i ∈ A | ci ≤ B}.

We associate a binary variable xi for each vertex i , and the partition of A = [n]

according to the value of the xi s defines the cut. There is also a binary variable zi j

92 Chapter 6. Going Beyond Monotonicity: Symmetric Submodular Objectives

for each edge {i , j } which is the indicator variable of whether {i , j } is in the cut.

maximize:

∑
i∈[n]

∑
j∈[n] [i]

wi j zi j (6.1)

subject to: zi j ≤ xi +x j , ∀i ∈ [n],∀ j ∈ [n] [i] (6.2)

zi j ≤ 2−xi −x j , ∀i ∈ [n],∀ j ∈ [n] [i] (6.3)∑
i∈[n]

ci xi ≤ B (6.4)

xi = 0 , ∀i ∈ [n] X (6.5)

0 ≤ xi , zi j ≤ 1 , ∀i ∈ [n], ∀ j ∈ [n] [i] (6.6)

xi ∈ {0,1} , ∀i ∈ [n] (6.7)

It is not hard to see that (6.1)-(6.7) is a natural ILP formulation for Budgeted Max

Weighted Cut and (6.1)-(6.6) is its linear relaxation. Let opt(I) and opt f (I) denote

the optimal solutions to (6.1)-(6.7) and (6.1)-(6.6) respectively for instance I . To show

how these two are related we will again use the technique of pipage rounding (Ageev

and Sviridenko, 1999; Ageev and Sviridenko, 2004). The proof of the next theorem

takes the same approach as the proof of Theorem 5.2.2.

Theorem 6.2.5. Given the fractional relaxation (6.1)-(6.6) for Budgeted Max Weighted

Cut, we have that opt f (I) ≤ (2+2βI) ·opt(I), for any instance I , where βI is such that

maxi∈A′ v(i) ≤βI ·opt(I).

Proof. We begin with a nonlinear program such that if all the xi s are integral then

the objectives (6.1) and (6.8) have the same value.

maximize: F (x) = ∑
i∈[n]

∑
j∈[n] [i]

wi j (xi +x j −2xi x j) (6.8)

subject to:

∑
i∈[n]

ci xi ≤ B (6.9)

xi = 0 , ∀i ∈ [n] X (6.10)

0 ≤ xi ≤ 1 , ∀i ∈ [n] (6.11)

So, if x is any feasible integral vector to our problem, we have F (x) ≤ opt(I). Moreover,

given any feasible solution x, z to (6.1)-(6.6), the value of (6.1) is upper bounded by

L(x) = ∑
i∈[n]

∑
j∈[n] [i] wi j min{xi + x j ,2− xi − x j }, since zi j ≤ min{xi + x j ,2− xi − x j } for

any i ∈ [n], j ∈ [n] [i].

Next, we show that F (x) ≥ 0.5L(x). This follows from the inequality

2(a +b −2ab) ≥ min{a +b,2−a −b} for any a,b ∈ [0,1] ,

proven by Ageev and Sviridenko (1999). For completeness we prove it here as well.

Notice that by replacing a and b by 1− a and 1− b respectively both sides of the

inequality remain exactly the same. Therefore, it suffices to prove 2(a+b−2ab) ≥ a+b

for any a,b ∈ [0,1] such that a +b ≤ 1 (since otherwise, 1−a +1−b ≤ 1). This however

is equivalent to a +b ≥ 4ab which is true since a +b ≥ (a +b)2 ≥ 4ab.

6.2. A First Take on Mechanism Design 93

Hence, if x∗, z∗
is an optimal fractional solution to (6.1)-(6.6), then the value of

(6.1) is opt f (I) = L(x∗) and thus F (x∗) ≥ 0.5L(x∗) = 0.5opt f (I). However, x∗
may have

several fractional coordinates. Our next step is to transform x∗
to a vector x ′

that has

at most one fractional coordinate and at the same time F (x ′) ≥ F (x∗). To this end, we

show how to reduce the fractional coordinates by (at least) one in any feasible vector

with at least two such coordinates.

Consider a feasible vector x, and suppose xi and x j are two non integral coor-

dinates. Note that i , j ∈ X . Let xi , j
ε be the vector we get if we replace xi by xi + ε

and x j by x j − εci /c j and leave every other coordinate of x the same. Note that the

function F̄ (ε) = F (xi , j
ε), with respect to ε, is either linear or a polynomial of degree 2

with positive leading coefficient. That is, F̄ (ε) is convex.

Notice now that xi , j
ε always satisfies the budget constraint (6.9), and also satisfies

(6.11) as long as ε ∈ [
max

{−xi , (x j −1)c j /ci
}

,min
{
1−xi , x j c j /ci

}]
. Due to convexity,

F̄ (ε) attains a maximum on one of the endpoints of this interval, say at ε∗. Moreover,

at either endpoint at least one of xi + ε∗ and x j − ε∗ci /c j is integral. That is, xi , j
ε∗ has

at least one more integral coordinate than x and F (xi , j
ε∗) ≥ F (x).

So, initially x ← x∗
. As long as there exist two non integral coordinates xi and x j

we set x ← xi , j
ε∗ as described above. This happens at most n −1 times, and outputs

a feasible vector x ′
with at most one non-integral coordinate, and with F (x ′) ≥ F (x∗).

We have then the following implications:

opt f (I) = L(x∗) ≤ 2 ·F (x∗) ≤ 2 ·F (x ′) . (6.12)

If x ′
is integral, then by (6.12) we have opt f (I) ≤ 2 ·F (x ′) ≤ 2 ·opt(I), and we are done.

So, suppose that x ′
r is the only fractional coordinate of x ′

. Let x0
and x1

be the vectors

we get if we set x ′
r to 0 or 1 respectively and leave every other coordinate of x ′

the

same. Notice that for a,b ∈ [0,1] the inequality (1−a)(b −1) ≤ 0 implies a +b −ab ≤ 1

and therefore a +b −2ab ≤ 1, so we have

F (x ′)−F (x0) = ∑
j∈[n] r

wr j (x ′
r −2x ′

r x ′
j) ≤ ∑

j∈[n] r
wr j (x ′

r +x ′
j −2x ′

r x ′
j) ≤ ∑

j∈[n] r
wr j = F (x1 −x0) ,

and thus

F (x ′) ≤ F (x0)+F (x1 −x0) . (6.13)

Combining (6.12)and (6.13), we have opt f (I) ≤ 2 ·F (x ′) ≤ 2 · (F (x0)+F (x1 −x0)
)
.

Using the fact that F is upper bounded by opt(I) on integral vectors, we have that

F (x0) ≤ opt(I). Observe now also that F (x1 −x0) =∑
j∈[n] r wr j = v(r) ≤βI opt(I), by the

definition of βI . Hence, overall we get

opt f (I) ≤ (2+2βI)opt(I) ,

thus completing the proof.

Note that there always exists some βI ≤ 1 for every instance I , hence, the above

94 Chapter 6. Going Beyond Monotonicity: Symmetric Submodular Objectives

theorem implies a worst-case upper bound of 4. Now, we may modify Det-Mech-

SymSM to use opt f instead of opt, and Mech-SM-frac instead of Mech-SM. This

results in the following deterministic mechanism that runs in polynomial time.

Det-Mech-UCut(A, v,c,B)

1 Set A′ = {i | ci ≤ B} and i∗ ∈ argmaxi∈A′ v(i)

2 if 26.25 · v(i∗) ≥ opt f (A′ {i∗},B) then

3 return i∗

4 else

5 S =Approx-Local-Search(A, v,0)

6 if opt f (S ∩ A′,B) ≥ opt f (A′ S,B) then

7 return Mech-SM-frac(S, v,cS ,B)

8 else

9 return Mech-SM-frac(A S, v,cA S ,B)

Theorem 6.2.6. Det-Mech-UCut is a deterministic, truthful, individually rational,

budget-feasible mechanism for Budgeted Max Cut that has approximation ratio 27.25

and runs in polynomial time.

Proof. Clearly the mechanism runs in polynomial time.

For truthfulness and individual rationality, it suffices to show that the allocation

rule is monotone, i.e., a winning agent j remains a winner if he decreases his cost to

be c ′j < c j . If j = i∗ and he wins in line 2, then his bid is irrelevant and he remains a

winner. If j 6= i∗, or j = i∗ but he wins after line 3, we may assume he wins at line 7

(the case of line 9 is symmetric). When bidding c ′j < c j , the decision of the mechanism

in line 2 does not change (if j 6= i∗ then opt f is improved, if j = i∗ nothing changes).

Further, since he cannot influence the local search, j is still in S and Mech-SM-frac

is executed. By the monotonicity of Mech-SM-frac we have that j is still a winner.

Therefore, the mechanism is monotone.

If the winner is i∗ in line 3, then his payment is B . Otherwise, budget-feasibility

follows from the budget-feasibility of Mech-SM-frac and the observation that the

comparison in line 2 only gives additional upper bounds on the payments of winners

from Mech-SM-frac.

It remains to prove the approximation ratio. We consider two cases. Let α= 26.25.

If i∗ is returned in line 3, then

α · v(i∗) ≥ opt f (A′ {i∗},B) ≥ opt(A′ {i∗},B) = opt(A {i∗},B) ≥ opt(A,B)− v(i∗) ,

and therefore opt(A,B) ≤ (α+1) · v(i∗) = 27.25 · v(i∗).

On the other hand, if X =Mech-SM-frac(S,B) is returned in line 7, then by Theo-

rem 6.2.5 with factor 4 we have

α · v(i∗) < opt f (A′ {i∗},B) ≤ 4 ·opt(A′ {i∗},B) = 4 ·opt(A {i∗},B) ≤ 4 ·opt(A,B).

6.3. Symmetric Submodular Objectives Revisited 95

Therefore, v(i∗) < 4
α opt(A,B) and for the remaining steps of the mechanism we can

use Theorem 6.2.5 with factor 2+8/α.

At line 6 it must be the case that opt f (S ∩ A′,B) ≥ opt f (A′ S,B). Thus,

(
2+ 8

α

)
opt(S,B) =

(
2+ 8

α

)
opt(S ∩ A′,B) ≥ opt f (S ∩ A′,B) ≥ opt f (A′ S,B)

≥ opt(A′ S,B) = opt(A S,B) ≥ opt(A,B)−opt(S,B) .

Therefore opt(S,B) ≥ α
3α+8 opt(A,B). By Theorem 5.2.1 we have(

4+8/α+
√

(2+8/α)2 +32/α+9
)

v(X) ≥ opt(S,B) ≥ α

3α+8
opt(A,B) ,

and by substituting α and doing the calculations we get opt(A,B) ≤ 27.25 · v(X).

The case where X = Mech-SM-frac(A S,B) is returned in line 9 is symmetric to

the case above and it need not be considered separately. We conclude that opt(A,B) ≤
27.25 · v(X).

6.3 Symmetric Submodular Objectives Revisited

Suppose that for a symmetric submodular function v , an optimal fractional solution

can be found efficiently and that opt f (A′,B) ≤ ρ ·opt(A,B) for any instance, where

opt f and opt denote the value of an optimal solution to the relaxed and the original

problem respectively, and A′ = {i ∈ A | ci ≤ B}.

A natural question is whether the approach taken for unweighted cut functions

can be fruitful for other symmetric submodular objectives. In the mechanisms of

Subsection 6.2.1, however, the complexity of local search can be a bottleneck even

for objectives where an optimal fractional solution can be found fast and it is not far

from the optimal integral solution. So, we now return to the idea of Section 6.1, where

local search runs in polynomial time and produces an approximate local maximum;

unfortunately, the nice property of monotonicity in each side of the partition (Lemma

6.2.1) does not hold any longer.

This means that the approximation guarantees of such mechanisms do not follow

in any direct way from existing work. Moreover, budget-feasibility turns out to be an

even more delicate issue since it crucially depends on the (approximate) monotonicity

of the valuation function. Specifically, when a set X only contains a very poor solution

to the original problem, every existing proof of budget feasibility for the restriction of

v on X completely breaks down. Since we cannot expect that an approximate local

maximum S and its complement A S both contain a “good enough” solution to the

original problem, we need to make sure that Greedy-SM never runs on the wrong set.

The mechanism Det-Mech-UCut for the unweighted cut problem seems to take

care of this and we are going to build on it, in order to propose mechanisms for

arbitrary symmetric submodular functions. To do so we replace the constant 26.25

that appears in Det-Mech-UCut by α= (1+ρ)
(
2+ρ+

√
ρ2 +4ρ+1

)
−1 and we find an

approximate local maximum instead of an exact local maximum. Most importantly,

96 Chapter 6. Going Beyond Monotonicity: Symmetric Submodular Objectives

in order to achieve budget-feasibility we introduce a modification of Mech-SM-frac,

called Mech-SM-frac-var, that runs Greedy-SM with a slightly reduced budget.

Mech-SM-frac-var(A, v,c,B ,γ)

1 Set A′ = {i | ci ≤ B} and i∗ ∈ argmaxi∈A′ v(i)

2 if

(
ρ+1+

√
ρ2 +4ρ+1

)
· v(i∗) ≥ opt f (A′ {i∗},B) then

3 return i∗

4 else

5 return Greedy-SM(A, v,c,γB/2)

Now we are ready to state mechanism Det-Mech-SymSM-frac. The parameter ε′

that appears in the description of the mechanism is determined by the analysis of

the mechanism and only depends on the constants ρ and ε. Clearly the Det-Mech-

SymSM-frac runs in polynomial time.

Det-Mech-SymSM-frac(A, v,c,B)

1 Set A′ = {i | ci ≤ B} and i∗ ∈ argmaxi∈A′ v(i)

2 if α · v(i∗) ≥ opt f (A′ {i∗},B) then

3 return i∗

4 else

5 S =Approx-Local-Search(A, v,ε′)
6 if opt f (S ∩ A′,B) ≥ opt f (A′ S,B) then

7 return Mech-SM-frac-var(S, v,cS ,B , (1− (α+2)ε′))

8 else

9 return Mech-SM-frac-var(A S, v,cA S ,B , (1− (α+2)ε′))

Theorem 6.3.1 below shows that for any objective for which we can establish a con-

stant upper bound ρ on the ratio of the fractional and the integral optimal solutions,

we have constant factor approximation mechanisms that run in polynomial-time.

Theorem 6.3.1. For any ε > 0, Det-Mech-SymSM-frac is a deterministic, truthful,

individually rational, budget-feasible mechanism for symmetric submodular valuations,

that has approximation ratio α+1+ε and runs in polynomial time.

We view Theorem 6.3.1 as the most technically demanding result of this chapter.

There are several steps involved in the proof, since we need the good properties of

Greedy-SM to still hold even for objectives that are not exactly non-decreasing. The

remaining subsection is dedicated to the proof of the theorem.

First we have to pave the way for the proof and this means we need to prove that

certain mechanisms work even for objectives that are not exactly non-decreasing. To

make this precise, given a ground set A, a budget B and a constant ε≥ 0, we say that

a set function v is (B ,ε)-quasi-monotone (or just quasi-monotone) on a set X ⊆ A if

for every T (X and every i ∈ X T , we have v(T ∪ {i })− v(T) ≥ − ε
n opt(X ,B). Clearly,

(B ,0)-quasi-monotone on X just means non-decreasing on X .

6.3. Symmetric Submodular Objectives Revisited 97

The main lemmata needed for our proofs are about Greedy-SM, as it all boils

down to the monotonicity, budget-feasibility, and approximation ratio of this simple

mechanism. As mentioned in Lemma 5.1.1, Greedy-SM is monotone, since any item

out of the winning set remains out of the winning set if it increases its cost.

Lemma 6.3.2. Suppose v is a (B ,ε)-quasi-monotone submodular function on A such

that U ·v(S) ≥ opt(A,B), where S is the set output by Greedy-SM(A, v,c, (1−Uε)B/2) and

U is a constant.
2

Assuming the payments of Myerson’s lemma, S is budget-feasible.

Proof. Recall that before the description of Greedy-SM we assumed—without loss of

generality—that agents are sorted in descending order with respect to their ratio of

marginal value over cost, i.e., 1 = argmax j∈A
v(j)
c j

and i = argmax j∈A\[i−1]
v([j])−v([j−1])

c j

for i ≥ 2. Suppose that S = [`], i.e., 1,2, . . . ,` are added in S in that order. Let

S0 =;= [0] and Si = [i] for 1 ≤ i ≤ `. We are going to show that the payment to agent i

is upper bounded by
B ·(v([i])−v([i−1])

v(S) , and then budget feasibility directly follows from∑
i∈[`]

B ·(v([i])−v([i−1])
v(S) = B .

Suppose this upper bound does not hold for every agent. That is, there exists some

j ∈ [`] such that agent j bids b j > B ·(v([j])−v([j−1]))
v(S) and is still included in the output S′

of Greedy-SM(A, v, (c− j ,b j), (1−Uε)B/2). Let b = (c− j ,b j) and notice that up to agent

j − 1, agents are added to S′
in the same order as they do in S, but after that the

ordering might be affected. Also for i ∈ [`] we have
v([i])−v([i−1])

ci
≥ v([`])−v([`−1])

c`
≥ 2·v([`])

(1−Uε)B

and therefore

b(S { j }) = c(S { j }) ≤ c(S) = ∑
i∈[`]

ci ≤ (1−Uε)B

2 · v([`])

∑
i∈[`]

(v([i])− v([i −1]) = (1−Uε)B

2
.

For Greedy-SM(A, v, (c− j ,b j), (1−Uε)B/2) let S′
j−1 be the chosen set right before j

is added and S′
j = S′

j−1 ∪ { j }. This implies

j ∈ argmax
i∈[n]

v(S′
j−1 ∪ {i })− v(S′

j−1)

bi
and

v(S′
j)− v(S′

j−1)

b j
≥

2 · v(S′
j)

(1−Uε)B
.

By Theorem 4.3.2 we have

v(S)− v(S′
j) ≤ ∑

i∈S S′
j

(v(S′
j ∪ {i })− v(S′

j))− ∑
i∈S′

j S

(v(S′
j ∪S)− v(S′

j ∪S {i }))

≤ ∑
i∈S S′

j

(v(S′
j ∪ {i })− v(S′

j))−|S′
j S|

(
− ε

n
opt(A,B)

)
≤ ∑

i∈S S′
j

(v(S′
j ∪ {i })− v(S′

j))+εU v(S) .

2
Typically, in our case, U is a constant associated with the constant ρ that determines how the

optimal solution to the relaxed problem is bounded by the optimal solution to the original problem. In

particular, throughout this work, U is upper bounded by (1+ρ)
(
2+ρ+

√
ρ2 +4ρ+1

)+1.

98 Chapter 6. Going Beyond Monotonicity: Symmetric Submodular Objectives

If S S′
j =; then we directly get v(S′

j) ≥ (1−εU)v(S), otherwise we have

(1−εU)v(S)− v(S′
j) ≤ ∑

i∈S S′
j

bi ·
v(S′

j ∪ {i })− v(S′
j)

bi

≤ max
i∈S S′

j

v(S′
j ∪ {i })− v(S′

j)

bi
· ∑

i∈S S′
j

bi

≤ max
i∈[n]

v(S′
j ∪ {i })− v(S′

j)

bi
·b(S S′

j)

≤ max
i∈[n]

v(S′
j−1 ∪ {i })− v(S′

j−1)

bi
·b(S { j })

≤
v(S′

j−1 ∪ { j })− v(S′
j−1)

b j
· (1−Uε)B

2

≤ v(S j−1 ∪ { j })− v(S j−1)

b j
· (1−Uε)B

2

≤ v(S)

B
· (1−Uε)B

2
= (1−Uε)v(S)

2
,

where the last inequality follows from the choice of b j , while the next to last inequality

follows from submodularity as [j − 1] = S j−1 ⊆ S′
j−1. Therefore, v(S′

j) ≥ (1/2− εU +
εU /2)v(S).

In any case, we have v(S′
j) ≥ (1/2−Uε/2)v(S) and thus

v(S j)− v(S j−1)

b j
≥

v(S′
j)− v(S′

j−1)

b j
≥

2v(S′
j)

(1−Uε)B
≥ 2(1/2−Uε/2)v(S)

(1−Uε)B
≥ v(S)

B
,

which contradicts our assumption about b j .

Lemma 6.3.2 establishes budget feasibility for quasi-monotone submodular func-

tions. The next step is to make sure that the approximation guarantee does not

deteriorate too much.

Lemma 6.3.3. Suppose v is a (B ,ε)-quasi-monotone submodular function on A. Let

S be the set output by Greedy-SM(A, v,c,βB) and i∗ ∈ argmaxi∈{ j∈A |c j≤B} v(i). Then

opt(A,B) ≤ 1
1−ε

(
1+β
β v(S)+ 1

βv(i∗)
)
.

Proof. Like in the proof of Lemma 6.3.2 we assume that agents are sorted in descend-

ing order with respect to their ratio of marginal value over cost, and that S = [`]. Let

S∗
be an optimal budget-feasible solution, i.e., v(S∗) = opt(A,B). By Theorem 4.3.2

we have

v(S∗)− v(S) ≤ ∑
i∈S∗ S

(v(S ∪ {i })− v(S))− ∑
i∈S S∗

(v(S ∪S∗)− v(S ∪S∗ {i }))

≤ ∑
i∈S∗ S

ci · v(S ∪ {i })− v(S)

ci
−|S S∗|

(
− ε

n
opt(A,B)

)
≤ max

i∈S∗ S

v(S ∪ {i })− v(S)

ci
· ∑

i∈S∗ S
ci +εv(S∗)

6.3. Symmetric Submodular Objectives Revisited 99

= v(S ∪ {`+1})− v(S)

c`+1
·c(S∗ S)+εv(S∗)

≤ v(S ∪ {`+1})

βB
·c(S∗)+εv(S∗) ≤ v(S ∪ {`+1})

β
+εv(S∗)

≤ 1

β
(v(S)+ v(`+1))+εv(S∗) ≤ 1

β
(v(S)+ v(i∗))+εv(S∗) .

By rearranging the terms we get opt(A,B) ≤ 1
1−ε

(
1+β
β v(S)+ 1

βv(i∗)
)
.

We are now ready to state the proof of the theorem.

Proof of Theorem 6.3.1 : The proof follows the proof of Theorem 6.2.6. In fact, the

monotonicity—and thus truthfulness and individual rationality—of the mechanism

follows from that proof and the observation that Mech-SM-frac-var is monotone

even when v is non-monotone. The latter is due to the monotonicity of Greedy-SM

which is straightforward and is briefly discussed before Lemma 6.3.2.

We proceed with the approximation ratio. If i∗ is returned in line 3, then

α · v(i∗) ≥ opt f (A′ {i∗},B) ≥ opt(A′ {i∗},B) = opt(A {i∗},B) ≥ opt(A,B)− v(i∗) ,

and therefore opt(A,B) ≤ (α+1) · v(i∗).

On the other hand, if X is returned by Mech-SM-frac-var in line 7, then we have

α · v(i∗) < opt f (A′ {i∗},B) ≤ ρ ·opt(A′ {i∗},B) ≤ ρ ·opt(A,B).

Therefore, v(i∗) < ρ
α opt(A,B).

At line 6 it must be the case opt f (S ∩ A′,B) ≥ opt f (A′ S,B). Thus,

ρ ·opt(S,B) = ρ ·opt(S ∩ A′,B) ≥ opt f (S ∩ A′,B) ≥ opt f (A′ S,B)

≥ opt(A′ S,B) = opt(A S,B) ≥ opt(A,B)−opt(S,B) .

Therefore opt(S,B) ≥ 1
ρ+1 opt(A,B). Now we need the following lemma about the per-

formance of Mech-SM-frac-var.

Lemma 6.3.4. For η= ρ+1+
√
ρ2 +4ρ+1 and any ε′′ > 0, there is a sufficiently small

ε′ so that opt(S,B) ≤ (η+1+ε′′)Mech-SM-frac-var(S, v,cS ,B , (1− (α+2)ε′)). Moreover ε′

only depends on the constants ρ and ε′′.

Proof. Let δ= (1− (α+2)ε′)/2. We consider two cases for Mech-SM-frac-var.

If i∗ is returned, then η · v(i∗) ≥ opt f (A′ {i∗},B) ≥ opt(A′ {i∗},B) = opt(A {i∗},B) ≥
opt(A,B)− v(i∗), and therefore opt(A,B) ≤ (η+1) · v(i∗).

On the other hand, if the outcome X of Greedy-SM is returned, then η · v(i∗) <
opt f (A′ {i∗},B) ≤ ρ ·opt(A′ {i∗},B) ≤ ρ ·opt(A,B). Combining this with Lemma 6.3.3

we have

opt(A,B) ≤ 1

1−ε′
(

1+δ
δ

v(X)+ 1

δ

ρ

η
opt(A,B)

)
,

100 Chapter 6. Going Beyond Monotonicity: Symmetric Submodular Objectives

or equivalently

opt(A,B) ≤ (1+δ)η

(1−ε′)δη−ρ v(X) .

Since limε′→0
(1+δ)η

(1−ε′)δη−ρ = 3η
η−2ρ , we have that for sufficiently small ε′, opt(A,B) ≤(

3η
η−2ρ +ε′′

)
v(X) = (η+1+ ε′′)v(X), where the calculations for the last equality are the

same as in the proof of the approximation ratio of Mech-SM-frac.

Now, combining all the above, we have

opt(A,B) ≤ (ρ+1)opt(S,B) ≤ (ρ+1)

(
ρ+2+ε′′+

√
ρ2 +4ρ+1

)
v(X) .

For ε′′ = ε
ρ+1 we have (ρ+1)

(
ρ+2+ε′′+

√
ρ2 +4ρ+1

)
=α+1+ε, as desired. So, the ε′

used in the mechanism is the one we get from the proof of Lemma 6.3.4 for ε′′ = ε
ρ+1 .

The case where X is returned in line 9 is symmetric. We conclude that in any

case opt(A,B) ≤ (α+1+ε) ·Det-Mech-SymSM-frac(A,B).

It remains to show that the mechanism is budget feasible. If the winner is i∗

in line 3, then his payment is B . Otherwise, we would like budget-feasibility to

follow from the budget-feasibility of Mech-SM-frac-var and the observation that the

comparison in line 3 only gives additional upper bounds on the payments of winners

from Mech-SM-frac. However, the budget-feasibility of Mech-SM-frac-var depends

on the budget-feasibility of Greedy-SM, and according to Lemma 6.3.2 it suffices to

have v(X) ≥ 1
α+2 ·opt(A,B), where X is the output of Greedy-SM. This, however, follows

from the approximation ratio for ε≤ 1. Thus the mechanism is budget-feasible. �

6.3.1 Weighted Cut Functions

Let us return now to the Max Cut problem, and consider the weighted version. An

immediate implication of Theorem 6.3.1 is that we get a deterministic polynomial-time

mechanism for Budgeted Max Weighted Cut with approximation ratio 58.72. This is

just the result of substituting ρ = 4, as suggested by Theorem 6.2.5, in the formula

for α.

Corollary 6.3.5. There is a deterministic, truthful, individually rational, budget-feasible

mechanism for Budgeted Max Weighted Cut that has approximation ratio 58.72 and

runs in polynomial time.

However, Theorem 6.2.5 says something stronger: given that maxi∈A′ v(i) is small

compared to opt(A,B), ρ is strictly smaller than 4. Note that the first step in Det-

Mech-SymSM-frac is to compare maxi∈A′ v(i) to opt f (A′ {i∗},B). This implies an upper

bound on maxi∈A′ v(i) in the following steps and we can use it to further fine-tune our

mechanism. In particular, by setting α= 26.245 instead of (1+4)
(
2+4+p

16+16+1
)−

1 = 57.72 in Det-Mech-SymSM-frac, we can prove the following improved result that

matches the approximation guarantee for unweighted cut functions.

6.3. Symmetric Submodular Objectives Revisited 101

Theorem 6.3.6. There is a deterministic, truthful, individually rational, budget-feasible

mechanism for Budgeted Max Weighted Cut that has approximation ratio 27.25, and

runs in polynomial time.

Proof. The proof is identical with the proof of Theorem 6.3.1 with the exception of the

analysis of the approximation ratio which borrows the ideas of the proof of Theorem

6.2.6. So we only focus on the approximation ratio.

If i∗ is returned in line 3, then opt(A,B) ≤ (α+1) · v(i∗) like before.

Otherwise, using Theorem 6.2.5, we have

α · v(i∗) < opt f (A′ {i∗},B) ≤ 4 ·opt(A′ {i∗},B) ≤ 4 ·opt(A,B).

Therefore, v(i∗) < 4
α opt(A,B) and for the remaining steps of the mechanism we can

use Theorem 6.2.5 with factor ρ′ = 2+8/α.

Without loss if generality, assume that X is returned by Mech-SM-frac-var in

line 7. At line 6 it must be the case opt f (S∩ A′,B) ≥ opt f (A′ S,B). Thus, following the

previous analysis, opt(S,B) ≥ 1
ρ′+1 opt(A,B).

Combining this inequality with Lemma 6.3.4 for ρ′
we get that for ε′′ = ε

ρ′+1 there

is an ε′ such that

opt(A,B) ≤ (ρ′+1)

(
ρ′+2+ε′′+

√
ρ′2 +4ρ′+1

)
v(X) = (α+1+ε) · v(X) .

This ε′ is to be used in the mechanism. Showing that α = 26.245 works is only a

matter of calculations, and for ε≤ 1/200 we get a 27.25-approximate solution.

103

Chapter 7

Going Beyond Submodular Objectives
1

Our central result in this chapter is a general scheme for obtaining randomized and

deterministic polynomial time approximations for a subclass of XOS problems, that

contains the budgeted versions of several well known optimization problems.

We first illustrate our ideas in Section 7.1, on the budgeted matching problem,

where v(S) is defined as the maximum weight matching that can be derived from the

edges of S. For this problem only a randomized 768-approximation was known (Bei

et al., 2012). We show that our approach yields a randomized 3-approximation and

a deterministic 4-approximation.

Then in Section 7.2, we show how to generalize our results to problems with a simi-

lar combinatorial structure, where the set of feasible solutions forms an independence

system. These structures are more general than matroids (they do not always satisfy

the exchange property) and some representative problems that are captured include

finding maximum weighted matroid members, maximum weighted k-D-matchings,

and maximum weighted independent sets. For such problems we establish that a

ρ-approximation to the algorithmic problem can be converted into a deterministic

(resp. randomized), truthful, budget feasible mechanism with an approximation ratio

of 2ρ+2 (resp. 2ρ+1). Note that essentially the approach for matching extends to

problems where the unbudgeted versions are not easy as is the case with matching.

Finally, in Section 7.3 we briefly study the class of XOS functions, where we

improve the current upper bound by a factor of 3. Note that that the known factor of

768 has been the benchmark against which most results in this, and the previous,

chapter are presented.

Going beyond submodular valuations creates severe challenges. Recently, Goel,

Nikzad, and Singla (2014) study a budgeted maximization problem with matching

constraints, which is not submodular, and they achieve an approximation ratio of

3+ o(1) with a deterministic mechanism, but under the large market assumption
2

(their mechanism has an unbounded ratio in general). Essentially, they use the same

greedy approach with Singer (2010) and Chen, Gravin, and Lu (2011) but seen as

a descending price auction. A very similar mechanism was also briefly discussed in

1
A conference paper containing most results of this chapter appeared in WINE ’16 (Amanatidis, Birm-

pas, and Markakis, 2016a). A preliminary version of the result of Section 7.3 appears in Amanatidis,

Birmpas, and Markakis (2017).

2
A market is said to be large if the number of participants is large enough that no single person can

affect significantly the market outcome, i.e., maxi ci /B = o(1).

104 Chapter 7. Going Beyond Submodular Objectives

Anari, Goel, and Nikzad (2014) for Knapsack under the large market assumption.

We are building on this idea of gradually decreasing a global upper bound on the

payment per value ratio to get most results of this chapter.

7.1 Budgeted Max Weighted Matching

We revisit the following budgeted matching problem.

Budgeted Max Weighted Matching. Given a budget B , and a graph G = (V ,E), where

each edge ei ∈ E has a cost ci and a value vi , find a matching M of maximum value

subject to
∑

i∈M ci ≤ B .

Here we study the mechanism design version of the problem, where the values

are known to the mechanism and the edges are viewed as single-parameter strategic

agents whose cost is private information.
3

Note that in order to formulate the problem

to fit the general description given in the beginning of Section 4.3, we can define the

valuation function as follows (as also mentioned in Bei et al., 2012): for any subset

of edges S ⊆ E , v(S) is taken to be the value of the maximum weighted matching of G

that only uses edges in S. This function turns out to be XOS, but not submodular.

Claim 7.1.1. The objective v(·) of weighted matching defined above is XOS, but not

submodular.

Proof. Matching is XOS: Let {M1, M2, ..., Mr } be the finite set of all possible matchings

of a given graph G. Now set α j (S) = ∑
i∈S∩M j

vi , for j ∈ {1, ...,r }, S ⊆ E(G), and note

that each α j is an additive function. Since v(S) is defined to be the value of the

maximum weighted matching of G that only uses edges in S, we have that v(S) =
max{α1(S),α2(S), ...,αr (S)}.

Matching is not submodular: Recall that in the case of Budgeted Max Weighted Match-

ing, the value v(S) of a set S of edges is defined as the value of the maximum weight

matching contained in S. To prove that v(·) is not submodular, consider the following

example:

1

1 1

1

1

u1 v1

u2 v2

u1 v1

v2 u2

Let A = {u2v1}, B = {u2v1,u2v2} and add the dashed edge u1v1 to both sets. Then

we have that v(A∪ {u1v1})− v(A) = 1−1 = 0 < 1 = 2−1 = v(B ∪ {u1v1})− v(B).

Hence, by Bei et al. (2012), there exists a randomized, 768-approximate mecha-

nism for Max Weighted Matching, that is truthful and budget feasible.

3
The work of Singer (2010) also studies a type of a budgeted matching problem. That objective,

however, is OXS (a subclass of submodular objectives), and differs significantly from ours, which is not

submodular (Singer, 2016).

7.1. Budgeted Max Weighted Matching 105

We provide both deterministic and randomized polynomial time mechanisms with

a much improved approximation ratio, based on selecting an outcome among two

candidate solutions. The first solution comes from the greedy mechanism Greedy-

ISK described below. The main idea behind the mechanism is that in each iteration

there is an implicit common upper bound on the rate that determines the payment of

each winner in the candidate outcome of that iteration. More specifically, if the i th

iteration is the final iteration (i.e., the condition in line 5 is true), the common payment

per value for each of the winners is upper bounded by min{B/v(M),ci−1/vi−1}. This

upper bound decreases with each iteration, while the set of active agents is shrinking,

until budget feasibility is achieved. At the same time we ensure the mechanism is

monotone and returns enough value.

We assume that the mechanism also takes as input a deterministic exact al-

gorithm f for the unbudgeted Max Weighted Matching, e.g., Edmond’s algorithm

(Edmonds, 1965). Later, in Subsection 7.2 the choice of f will depend on the under-

lying unbudgeted problem. Finally, note that our mechanisms are named after the

generalization we study in Subsection 7.2, namely Independence System Knapsack

problems.

Greedy-ISK(A, v,c,B , f)

1 Set A = {i | ci ≤ B}

2 Possibly rename elements of A so that
c1
v1

≥ c2
v2

≥ ... ≥ cm
vm

3 for i = 1 to m do

4 M = f (A, v)

5 if v(M) · ci
vi

≤ B then

6 return M

7 else

8 A = A {i }

We now exhibit some desirable properties of Greedy-ISK, starting with truthfulness.

Lemma 7.1.2. Mechanism Greedy-ISK is monotone, and hence truthful and individu-

ally rational.

Proof. By Lemma 4.3.5, we just need to show that the allocation rule is monotone,

i.e., a winning agent remains a winner if he decreases his cost. Initially note that in

line 4 the mechanism computes an optimal matching M (without a budget constraint)

using only the values of the edges, thus it cannot be manipulated given the set of

active edges A.

Fix a vector c− j for the costs of the other agents, and suppose that when agent j

declares c j , he is in the matching M returned in the final iteration, say k, of Greedy-

ISK. Let agent j now report c ′j < c j to the mechanism. This makes him agent j ′ ≥ j in

the new instance, but does not affect the relative ordering of the other agents (although

a few of them may move down one position). Therefore, Greedy-ISK will run exactly

as before for each iteration i < k and in the beginning of the kth iteration, it will

106 Chapter 7. Going Beyond Submodular Objectives

produce the exact same matching M . Then in line 5, there are 2 cases to examine.

If in the initial instance j > k, then we have the exact same ratio
ck
vk

to consider, and

the algorithm will terminate with M (since it did so in the initial instance). In the

second case, j = k in the initial instance. This means that now at the kth iteration,

we either have the same agent with the reduced ratio
c ′

k
vk

(since now c ′k = c ′j) or we

have the agent who was in position k +1 in the initial instance with ratio equal to the

original
ck+1
vk+1

. Therefore, the new ratio
ck
vk

that the algorithm considers in this iteration

is at most equal to the original ratio
ck
vk

. Thus, the condition in line 5 is satisfied, and

the mechanism will return M . We conclude that an agent who is in the matching,

remains in the matching by decreasing his cost.

We also make the following remark, which can be derived by the same arguments

used in the proof of Lemma 7.1.2. This property is crucial for derandomizing our

mechanisms both here and in the next subsection.

Remark 7.1.3. There is no agent i that can manipulate the output set of Greedy-ISK

given that i is guaranteed to be a winner, i.e., fixing c−i , if the winning sets are M

and M ′
when i bids ci and c ′i respectively, with i ∈ M ∩M ′

then M = M ′
.

We move on to prove that the mechanism will never exceed the budget B , by

establishing an appropriate upper bound on every winning bid.

Lemma 7.1.4. Mechanism Greedy-ISK is budget feasible.

Proof. We will show that the threshold payment of Lemma 4.3.5, for any winning agent

i cannot be higher than
vi B

v(M) . Fix a vector c−i for all agents other than i and recall that

the threshold payment, given c−i , is the maximum cost that i can declare and still be

included in the solution. So, towards a contradiction, suppose that agent i declares

a cost ci > vi B
v(M) and he is a winner. Let j denote the iteration where the mechanism

Greedy-ISK terminates and the matching M is returned. By the construction of the

mechanism, and since i ∈ M , we have that
c j

v j
≥ ci

vi
. Since j is the last iteration, we

also have by line 5 that v(M)
c j

v j
≤ B . Hence v(M) ci

vi
≤ v(M)

c j

v j
≤ B that leads to the

contradiction ci ≤ vi B
v(M) . Therefore, the payment of each winning agent i is bounded

by
vi B

v(M) , and the total payment of the mechanism is
∑

i∈M pi ≤∑
i∈M

vi B
v(M) = B .

Finally, we analyze the quality of the solution produced by the greedy mechanism.

Lemma 7.1.5. Mechanism Greedy-ISK produces a matching with value at least

1
2 (v(M∗)− vi∗), where M∗

is an optimal solution to the given instance of Budgeted

Max Weighted Matching, and i∗ has maximum value among the budget feasible edges

of G, i.e., i∗ ∈ argmaxi∈F v(i) where F = {i ∈ E(G) | ci ≤ B}.

Proof. Let M∗
be an optimal budget feasible matching and A be the set of active edges

at the final iteration j of Greedy-ISK when matching M was returned. We have that

7.1. Budgeted Max Weighted Matching 107

v(M∗) = v(M∗∩ A)+ v(M∗ A). Since M∗∩ A is a matching with edges from A but M

is an optimal such matching, we have that

v(M∗∩ A) ≤ v(M) . (7.1)

In addition, notice that if i ∈ M∗ A then
ci
vi

≥ c j−1

v j−1
since j −1 is the last edge removed

from the set A before the final iteration j . Thus,

B ≥ ∑
i∈M∗ A

ci ≥
∑

i∈M∗ A
vi ·

c j−1

v j−1
≥ v(M∗ A) · c j−1

v j−1
. (7.2)

Now, consider the (j −1)th iteration and call M ′
the matching produced in that

iteration. Note that M ′ { j − 1} is a matching containing only edges that are active

during iteration j . Therefore, v(M) ≥ v(M ′ { j −1}). Moreover, if j −1 ∈ M ′
then v(M ′) =

v(M ′ { j −1})+v j−1, while if j −1 ∉ M ′
then v(M ′) = v(M ′ { j −1}) ≤ v(M ′ { j −1})+v j−1.

Using also the fact that j −1 was not the final iteration we have

v j−1

c j−1
·B < v(M ′) ≤ v(M ′ { j −1})+ v j−1 ≤ v(M)+ vi∗ . (7.3)

By combining (7.2) and (7.3) we get

v(M∗ A) ≤ v(M)+ vi∗ . (7.4)

Finally, combining (7.4) with (7.1) we get v(M∗) = v(M∗∩A)+v(M∗ A) ≤ v(M)+v(M)+
vi∗ = 2v(M)+ vi∗ and therefore v(M) ≥ 1

2 (v(M∗)− vi∗).

We can now state our randomized mechanism for the problem (where the constants

below have been optimized to get the best ratio).

Rand-ISK

1 Set A = {i | ci ≤ B} and i∗ ∈ argmaxi∈A v(i)

2 With probability 1/3 return i∗ and with probability 2/3 return Greedy-ISK(A, v,c,B , f)

Theorem 7.1.6. Rand-ISK is a universally truthful, individually rational, budget fea-

sible, polynomial time randomized mechanism, achieving a 3-approximation in expec-

tation, for the Budgeted Max Weighted Matching problem.

Proof. Universal truthfulness and individual rationality follow from Lemma 7.1.2 and

the fact that the simple mechanism that returns i∗ and pays him B is truthful and

individually rational. Regarding budget feasibility, just notice that if i∗ is returned

then the threshold payment is exactly B , otherwise the payments of Greedy-ISK

are used, so budget feasibility follows from Lemma 7.1.4. Finally, if M denotes the

outcome of Rand-ISK, then directly by Lemma 7.1.5 we have

E(M) ≥ 2

3
· 1

2
(v(M∗)− vi∗)+ 1

3
vi∗ = 1

3
v(M∗) ,

thus proving the approximation ratio.

108 Chapter 7. Going Beyond Submodular Objectives

7.1.1 Derandomization

We close this subsection by showing that we can have a deterministic polynomial

time mechanism with a slightly worse approximation ratio. It is interesting to note

that in contrast to Mech-SM or Mech-SM-frac, here i∗ is directly compared to its

alternative, which is just an approximate solution, without sacrificing truthfulness.

This is due to Remark 7.1.3. Note also that although taking the maximum of two

truthful algorithms does not always yield a truthful mechanism, we show that this is

the case for the mechanism below.

Det-ISK

1 Set A = {i | ci ≤ B} and i∗ ∈ argmaxi∈A v(i)

2 if vi∗ ≥Greedy-ISK(A {i∗}, v,c−i∗ ,B , f) then

3 return i∗

4 else

5 return Greedy-ISK(A {i∗}, v,c−i∗ ,B , f)

Theorem 7.1.7. Det-ISK is a truthful, individually rational, budget feasible, polyno-

mial time deterministic mechanism, achieving a 4-approximation ratio for the Budgeted

Max Weighted Matching problem.

Proof. For truthfulness and individual rationality we show the algorithm is monotone.

If i∗ wins (lines 2-3) and he decreases his cost, he still wins since his bid is irrelevant

to the outcome. On the other hand, suppose that the mechanism reaches line 5 and

let i ∈ A {i∗} be one of the winners. Then, by decreasing his cost, i will remain a

winner since the output of Greedy-ISK will not change (see the proof of Lemma 7.1.2

and Remark 7.1.3 after that), and the same branch of the mechanism Det-ISK will

be executed again.

Budget feasibility is straightforward and follows from the same arguments used

in the proof of Theorem 7.1.6

For the approximation ratio, we begin with some notation. Let vG be the value

of the matching returned by Greedy-ISK(A {i∗}, v,c−i∗ ,B , f), M be the output of Det-

ISK(A, v,c,B , f), opt(S) be the value of an optimal solution with respect to the set of

edges S ⊆ E(G), and finally let i ′ be an edge of maximum value in the set A {i∗}. Clearly,

if opt is the value of an optimal solution to the initial instance, then opt = opt(A).

Finally, observe that opt(A) ≤ opt(A {i∗})+ vi∗ ≤ 2vG + vi ′ + vi∗ ≤ 2vG + 2vi∗ . Now if

vi∗ ≥ vG then opt≤ 4vi∗ = 4v(M), while if vi∗ < vG then opt≤ 4vG = 4v(M). Thus in any

case we have that opt≤ 4v(M) and this concludes the proof.

The above analysis of Det-ISK is tight, as shown below, i.e., there exist instances

where the value of the optimal solution is arbitrarily close to four times the value of

the mechanism’s output.

Claim 7.1.8. The analysis of Det-ISK is tight

Proof. We provide an example where the value achieved by Det-ISK, is almost 1/4 of

the value of an optimal solution. Consider the following independence system (U , I):

7.2. Independence System Knapsack Objectives 109

U = {1,2,3,4}, I = 2U
, where v1 = v+2ε, v2 = v , v3 = v , v4 = v+ε, for ε> 0, c1 = δ, c2 = 10,

c3 = 10, c4 = δ for δ < 5ε
v << 10, and B = 20+2δ. It is easy to check that U is budget

feasible and thus U is the optimal solution with value equal to 4v +3ε= opt. Bellow

we provide a visualization of such an instance in terms of matching:

 edge 1

edge 2

edge 3

edge 4

v+2ε, δ

v, 10

v, 10

v+ε, δ

Now let us examine the value of Det-ISK’s output: The most valuable item here

is 1 with v1 = v +2ε, so i∗ = 1. On the other hand, Greedy-ISK orders the remaining

items in the following manner:
c2
v2

≥ c3
v3

≥ c4
v4

. So by running this instance we have that

(3v + ε) 10
v = 30+ 10ε

v > 20+ 2·5ε
v > 20+2δ= B , and thus item 2 is excluded. Greedy-ISK

then moves to the next iteration (items 3 and 4 are active), where (2v+ε) 10
v = 20+ 10ε

v =
20+ 2·5ε

v > 20+2δ = B , so item 3 is excluded as well. Greedy-ISK moves to the next

iteration (only item 4 is active), where (v +ε) δ
v+ε = δ≤ 20+2δ= B , so the output is item

4 with total value v +ε.
Now we have that vi∗ = v +2ε> v +ε= Greedy-ISK(U {i∗},B) and hence the value

of Det-ISK’s output is v +2ε' 1
4 (4v +3ε) = 1

4 opt.

Remark 7.1.9. Chen, Gravin, and Lu (2011) prove lower bounds for Knapsack,

namely there is no deterministic (resp. randomized) truthful, budget feasible mecha-

nism for Knapsack that can achieve an approximation ratio better than 1+p
2 (resp.

2). Note that these lower bounds hold here as well, because when the given graph G

is a matching to begin with, Budgeted Max Weighted Matching reduces to Knapsack.

7.2 Independence System Knapsack Objectives

Our approach can tackle a number of different problems that have certain struc-

tural similarities with Budgeted Max Weighted Matching. Here, we define a class of

such problems for which Greedy-ISK—given an appropriate subroutine f —produces

truthful, individually rational, budget feasible mechanisms with good approximation

guarantees.

Two crucial properties of the matching problem were used in the previous subsec-

tion: (i) every subset of a matching is itself a matching, and (ii) the objective function

becomes additive when restricted to matchings. These two properties is all we need,

and note that (i) and (ii) are exactly what makes the set of matchings of a graph an

independence system.

110 Chapter 7. Going Beyond Submodular Objectives

Definition 7.2.1. An independence system is a pair (U , I), where U is an arbitrary

finite set and I ⊆ 2U
is a family of subsets, whose members are called the independent

sets of U and satisfy:

(i) ;∈ I

(ii) If B ∈ I and A ⊆ B , then A ∈ I .

Below we define a variant of Knapsack where the feasible solutions are constrained

to an independence system. This forms a generalization of knapsack problems subject

to matroid constraints, which are more common in the literature.

Independence System Knapsack. Given an independence system (U , I) with costs ci

and values vi on the elements of U , as well as a budget B , find M ∈ I that maximizes∑
i∈M vi subject to

∑
i∈M ci ≤ B .

Note that for plain Knapsack U = [n], I = 2[n]
, while for Budgeted Max Weighted

Matching U is the set of edges of a given graph G and I is the set of all matchings of

G. There exist several other problems that are special cases of Independence System

Knapsack, like

• Budgeted Max Weighted Forest where U is the set of edges of a given graph G

and I is the set of acyclic subgraphs of G,

• Budgeted Max Weighted Matroid Member where (U , I) is a matroid
4

(Budgeted

Max Weighted Forest is a special case of this problem),

• Budgeted Max Independent Set where U is the set of vertices of a given graph G

and I is the set of independence sets of G, and

• Budgeted Max Weighted k-D-Matching where U is the set of hyperedges of a k-

uniform k-partite hypergraph H and I is the set of all k-dimensional matchings

of H .

The following can be easily derived as in the case of Budgeted Max Weighted Matching.

Lemma 7.2.2. Every problem that can be formulated as an Independence System

Knapsack problem belongs to the class XOS.

Clearly it is not always possible to find an optimal solution to Independence Sys-

tem Knapsack in polynomial time, even if we remove the budget constraint. Putting

the running time aside, however, Greedy-ISK combined with an exact algorithm f

for the problem makes Rand-ISK (resp. Det-ISK) a 3-approximate randomized (resp.

4-approximate deterministic) truthful, individually rational, budget feasible mecha-

nism.

Moreover, when the unbudgeted underlying problem is easy—as is the case for

Max Weighted Matching, Max Weighted Forest, and Max Weighted Matroid Member—

the mechanisms run in polynomial time. Even if the unbudgeted underlying problem

4
A matroid (U , I) is an independence system that also has the exchange property:

(iii) If A,B ∈ I and |A| < |B |, then there exists x ∈ B A such that A∪ {x} ∈ I .

7.2. Independence System Knapsack Objectives 111

is N P-hard, as long as there is a polynomial time ρ(n)-approximation we get O(ρ(n))-

approximate, truthful, individually rational, budget feasible mechanisms, e.g., for

Budgeted Max Weighted k-D-Matching this translates to a O(k)-approximation mech-

anism. Here, n is the size of the input, and we should mention that the independent

sets of U may not be explicitly given. Typically we assume an independence oracle

that decides for any X ⊆U whether X ∈ I . However, note that in every special case

of Independence System Knapsack mentioned above, we are given a combinatorial,

succinct representation of I and therefore there is no need to assume access to an

oracle.

When using a ρ(n)-approximation algorithm we should adjust the probabilities

in Rand-ISK, namely we should use
2ρ(n)

2ρ(n)+1 instead of 2/3 and
1

2ρ(n)+1 instead of 1/3.

Moreover, for both mechanisms and without loss of generality, we assume that for

every i ∈U we have {i } ∈ I , or else i can be excluded from the initial set A of active

elements that is given as input to the mechanisms.

Theorem 7.2.3. If a deterministic ρ(n)-approximation algorithm f for the unbudgeted

version of Independence System Knapsack is given as an auxiliary input to Greedy-ISK,

then Rand-ISK (resp. Det-ISK) becomes a (2ρ(n)+1)-approximate randomized (resp.

(2ρ(n) + 2)-approximate deterministic) truthful, individually rational, budget feasible

mechanism. Moreover, if f runs in polynomial time so do the mechanisms.

Proof. The proof of Theorem 7.2.3 follows closely the analysis of Section 7.1. In fact,

the proof of truthfulness, individual rationality, and budget feasibility is exactly the

same with the proofs of Lemmata 7.1.2 and 7.1.4, if we replace “matching” with

“independent set of I ” and “edge” with “element of U ”. The proof of the approximation

ratios follows closely the proofs of Lemma 7.1.5 and Theorems 7.1.6 and 7.1.7, so we

will only focus on the differences.

Let M∗ ∈ I be an optimal budget feasible independent set and A ⊆ U be the set

of active elements at the final iteration j of Greedy-ISK when the ρ(n)-approximate

solution M was returned. Also, let MA be an optimal budget feasible independent set

using only elements of A. We have that v(M∗) = v(M∗∩A)+v(M∗ A). But M∗∩A ⊆ M∗

is an independent set with elements from A so, the analog of (7.1) is now

v(M∗∩ A) ≤ v(MA) ≤ ρ(n) · v(M) .

Similarly, the analog of (7.4) is now

v(M∗ A) ≤ ρ(n) · v(M)+ vi∗ ,

and thus we get v(M∗) = v(M∗ ∩ A)+ v(M∗ A) ≤ 2ρ(n) · v(M)+ vi∗ , or equivalently

v(M) ≥ 1
2ρ(n) (v(M∗)−vi∗). Now the approximation ratio of Rand-ISK is straightforward

since the expected value of the output of the mechanism is at least

2ρ(n)

2ρ(n)+1
· 1

2ρ(n)
(v(M∗)− vi∗)+ 1

2ρ(n)+1
vi∗ = 1

2ρ(n)+1
v(M∗) .

112 Chapter 7. Going Beyond Submodular Objectives

For the approximation ratio of Det-ISK, using the notation of the proof of Theorem

7.1.7 we have opt(A) ≤ opt(A {i∗})+vi∗ ≤ 2ρ(n)vG +vi ′+vi∗ ≤ 2ρ(n)vG +2vi∗ . If vi∗ ≥ vG

then opt ≤ (2ρ(n)+2)vi∗ , while if vi∗ < vG then opt ≤ (2ρ(n)+2)vG . Thus in any case

we have opt≤ (2ρ(n)+2)v(M).

Combining Theorem 7.2.3 with the polynomial time (k − 1)-approximation algo-

rithm of Chan and Lau (2012) for Max Weighted k-D-Matching, and the fact that

Max Weighted Forest and Max Weighted Matroid Member (given a polynomial time

independence oracle) can be solved in polynomial time (see, e.g., Cook et al., 1998),

we get the following corollary.

Corollary 7.2.4. We can obtain

(i) randomized 3-approximation mechanisms and deterministic 4-approximation mecha-

nisms for Budgeted Max Weighted Forest and Budgeted Max Weighted Matroid Member

(as well as Knapsack and Budgeted Max Weighted Matching) that run in polynomial

time.

(ii) randomized 3-approximation mechanisms and deterministic 4-approximation mech-

anisms for Budgeted Max Weighted Independent Set and Budgeted Max Weighted

k-D-Matching.

(iii) for any k ≥ 3, a randomized (2k −1)-approximation mechanism and a determinis-

tic 2k-approximation mechanism for Budgeted Max Weighted k-D-Matching that run in

polynomial time.

Remark 7.2.5. Max Weighted Independent Set and Max Weighted k-D-Matching are

not submodular, as was the case for Max Weighted Matching. Max Weighted Matroid

Member (and thus Max Weighted Forest), on the other hand, is submodular and

therefore the results of Chen, Gravin, and Lu (2011) apply. Note, however, that

we still get a significant improvement, both on the approximation ratio and on the

running time by our approach.

Naturally, Remark 7.1.9 applies here as well. For every problem stated in this

section there is no deterministic (resp. randomized) truthful, budget feasible mecha-

nism with better approximation ratio than 1+p
2 (resp. 2). These lower bounds are

independent of any complexity assumption.

7.3 An Improved Upper Bound for XOS Objectives

In Bei et al. (2012) a randomized, universally truthful and budget-feasible 768-

approximation mechanism was introduced for XOS functions. For several of the

results in Part II the best previously known upper bound follows from this result (see

also Remark 6.0.1). In this section we slightly modify their mechanism to improve its

performance.
5

Although there is not much novelty in this result, it feels appropriate

5
In a recent unpublished manuscript, Leonardi et al. (2016) also suggest a fine-tuning of this mech-

anism that yields a factor 436.

7.3. An Improved Upper Bound for XOS Objectives 113

to provide this tighter analysis, given that the factor of 768 has been the benchmark

against which our results are presented.

Note that in Section 4.3 we defined non-decreasing XOS functions, and everything

is stated and proved for those. However, there is a relatively straightforward way to

extend any result to general XOS functions, as defined in Gupta, Nagarajan, and

Singla (2017); see Remark 6.0.1 and Appendix B.2.

Below we provide the mechanism Main-XOS. Our mechanism has the same struc-

ture as the one presented in Bei et al. (2012) but we tune its parameters and perform

a slightly different analysis in order to improve the approximation factor. The mech-

anism Additive-Mechanism of Chen, Gravin, and Lu (2011) for additive valuation

functions is used as a subroutine. Additive-Mechanism is a universally truthful, 3-

approximate mechanism (see Theorem B.2 in Chen, Gravin, and Lu (2011)). Initially,

we revisit the random sampling part of the mechanism and modify the threshold

bound of line 2:

Sample-XOS

1 Pick each item independently at random with probability
1
2 to form a set T

2 Compute opt(T, v,cT ,B) and set a threshold t = opt(T,v,cT ,B)
4.6B

3 Find a set S∗ ∈ argmaxS⊆A T {v(S)− t ·c(S)}

4 Find an additive function α in the XOS representation of v(·) with α(S∗) = v(S∗)

5 return Additive-Mechanism(S∗,α,cS∗ ,B)

This part is used as one of the two alternatives of the main mechanism. We modify

the probabilities with which the two outcomes occur:

Main-XOS

1 With probability p = 0.08, pick a most valuable item as the only winner and pay him B

2 With probability 1−p, run Sample-XOS

By following a similar but more careful analysis, we improve the approximation

ratio by a factor of 3 while also retaining its properties. Notice that like the mechanism

of Bei et al. (2012), Main-XOS is randomized and has superpolynomial running time.

In particular, it requires a demand oracle.

Theorem 7.3.1. Main-XOS is universally truthful, individually rational, budget-feasible,

and has approximation ratio 244.

Proof. Universal truthfulness, individual rationality and budget feasibility follow di-

rectly from the proof of Theorem 3.1 of Bei et al. (2012).

We proceed in proving the approximation ratio of the mechanism. Let i∗ ∈
argmaxi∈A v(i) and XS be the output of Sample-XOS. In addition, let X be an opti-

mal solution, i.e., a subset of A such that v(X) = opt(A, v,c,B) and c(X) ≤ B .

We also need the following two lemmata:

Lemma 7.3.2 (Claim 3.1 in Bei et al. (2012)). For any S ⊆ S∗,α(S)− t ·c(S) ≥ 0.

Lemma 7.3.3 (Lemma 2.1 in Bei et al. (2012)). Consider any subadditive function v(·).
For any given subset S ⊆ A and a positive integer k assume that v(S) ≥ k · v(i) for any

114 Chapter 7. Going Beyond Submodular Objectives

i ∈ S. Further, suppose that S is divided uniformly at random into two groups T1 and

T2. Then with probability at least
1
2 , we have that v(T1) ≥ k−1

4k v(S) and v(T2) ≥ k−1
4k v(S).

Let κ= 74. We are going to use κ to set different values for k in Lemma 7.3.3 for

different cases. We follow a similar analysis as Bei et al. (2012), but since we use two

different values for k, things get a little more complicated. Let XM to be the output of

Main-XOS. We have the following three case regarding the value of item i∗:

1. v(i∗) > 3.8
κ opt(A, v,c,B). In this case we have that

E(v(XM)) = p · v(i∗)+ (1−p) ·E(v(XS)) ≥ p · v(i∗) ≥ p
3.8

κ
opt(A, v,c,B) ,

and thus, opt(A, v,c,B) ≤ 243.5 ·E(v(XM)).

2.
1
κ opt(A, v,c,B) < v(i∗) ≤ 3.8

κ opt(A, v,c,B). Note that now we can apply Lemma 7.3.3

with k = κ
3.8 . We split this case into two subcases:

• c(S∗) > B . Since c(S∗) is more than B we can find a subset S′ ⊆ S∗
, such that

B
2 ≤ c(S′) ≤ B . By Lemma 7.3.2 we have

α(S′) ≥ t ·c(S′) ≥ opt(T, v,cT ,B)

4.6 ·B
· B

2
≥ opt(T, v,cT ,B)

9.2
.

By using Lemma 7.3.3 we have

opt(T, v,cT ,B) ≥ opt(T ∩X , v,cT∩X ,B) ≥ κ−3.8

4κ
opt(X , v,cX ,B)

= κ−3.8

4κ
opt(A, v,c,B) .

Since opt(S∗,α,cS∗ ,B) is the value of an optimal solution and S′
a particular

solution under budget constraint B , we conclude that

opt(S∗,α,cS∗ ,B) ≥α(S′) ≥ opt(T, v,cT ,B)

9.2
≥ (κ−3.8)

36.8 ·κ opt(A, v,c,B) ,

with probability at least
1
2 .

• c(S∗) ≤ B . In this case we have that

α(S∗) = opt(S∗,α,cS∗ ,B) = opt(S∗, v,cS∗ ,B) = v(S∗) .

Let S′ = X T . We have c(S′) ≤ c(X) ≤ B and also, by using Lemma 7.3.3,

v(S′) ≥ κ−3.8
4κ opt(A, v,c,B) with probability of at least

1
2 . Then, we have

opt(S∗,α,cS∗ ,B) = v(S∗) ≥ v(S∗)− t ·c(S∗) ≥ v(S′)− t ·c(S′)

≥ κ−3.8

4κ
opt(A, v,c,B)− opt(T, v,cT ,B)

4.6 ·B
·B

≥
(
κ−3.8

4κ
− 1

4.6

)
opt(A, v,c,B) ,

7.4. Directions for Future Research 115

with probability at least
1
2 .

By substituting κ, it is easy to see that
κ−3.8

4κ − 1
4.6 < (κ−3.8)

36.8·κ . So, in both cases

we have that opt(S∗,α,cS∗ ,B) ≥ (
κ−3.8

4κ − 1
4.6

)
opt(A, v,c,B) with probability at least

1
2 .

Now recall that Additive-Mechanism has an approximation factor of at most 3 with

respect to opt(S∗,α,cS∗ ,B). So we can finally derive that

E(v(XS)) ≥ 1

3
opt(S∗,α,cS∗ ,B) ≥ 1

3
· 1

2
·
(
κ−3.8

4κ
− 1

4.6

)
·opt(A, v,c,B) .

Thus the solution that Main-XOS returns has expected value

E(v(XM)) = p · v(i∗)+ (1−p) ·E(v(XS))

≥ p

κ
·opt(A, v,c,B)+ (1−p)

6
·
(
κ−3.8

4κ
− 1

4.6

)
·opt(A, v,c,B) .

By substituting the values for p,κ we get opt(A, v,c,B) ≤ 243.2 ·E(v(XM)).

3. v(i∗) ≤ 1
κ opt(A, v,c,B). The analysis of case 2 holds here as well, so we omit the

details. The only difference is that now Lemma 7.3.3 should be applied with

k = κ. The subcase where c(S∗) > B gives opt(S∗,α,cS∗ ,B) ≥ (κ−1)
36.8·κ opt(A, v,c,B) with

probability at least
1
2 , while the subcase where c(S∗) ≤ B gives opt(S∗,α,cS∗ ,B) ≥(

κ−1
4κ − 1

4.6

)
opt(A, v,c,B) with probability at least

1
2 . By substituting κ, we see that

(κ−1)
36.8·κ < κ−1

4κ − 1
4.6 . So, in both cases we have that opt(S∗,α,cS∗ ,B) ≥ (κ−1)

36.8·κ opt(A, v,c,B)

with probability at least
1
2 . The above analysis gives that the solution returned by

Main-XOS has expected value

E(v(XM)) ≥ (1−p)

6
· (κ−1)

36.8 ·κ ·opt(A, v,c,B) .

By substituting the values for p,κ we get opt(A, v,c,B) ≤ 243.3 ·E(v(XM)).

We conclude that opt(A, v,c,B) ≤ 244 ·E(v(XM)).

7.4 Directions for Future Research

There are still many interesting open problems that are worth further exploration in

the context of budget-feasible mechanism design. First, for the case of submodular

functions, even though we do have a better understanding for designing mechanisms

given all the previous works, the current results are still not known to be tight.

In Chapter 6, we have made progress on the design of budget-feasible mech-

anisms for symmetric submodular objectives. It is a first step towards studying

non-monotone submodular objectives, but this is still a largely unexplored territory.

Moreover, even for the significantly improved results we obtained, it remains an open

problem whether any of these approximation ratios are tight, as is the case for non-

decreasing objectives.

116 Chapter 7. Going Beyond Submodular Objectives

For non submodular objectives, and specifically for the XOS class, the picture is

way more challenging. We would like to identify more problems that admit better

approximation guarantees, even with exponential time mechanisms. A component

that seems to be missing at the moment is a characterization of truthful and budget

feasible mechanisms. We believe that obtaining characterization results would be

crucial in resolving the above questions.

Regarding our techniques, we expect that the idea of utilizing local search in order

to identify monotone regions of a general submodular function may have further

applications both on mechanism design and on submodular optimization.

117

Appendix A

Missing Material from Section 3.1

Proof of Theorem 3.1.4. Assume X is a picking-exchange mechanism with parti-

tion (N1, N2,E1,E2), offer sets Oi on Ni , for i ∈ {1,2}, and set of exchange deals D.

Let v = (v1, v2) ∈ V 6=
m be a profile, and fix v2. We are going to show that there is no

v′ = (v ′
1, v2) ∈ V 6=

m such that v1(X1(v′)) > v1(X1(v)).

For any v′ = (v ′
1, v2) ∈ V 6=

m there exist the following possibilities:

(a) X1(v′) = X1(v). Then clearly v1(X1(v′)) = v1(X1(v)).

(b) X N1∪N2
1 (v′) 6= X N1∪N2

1 (v), but X E1∪E2
1 (v′) = X E1∪E2

1 (v). Then it must be the case where

X N1
1 (v′) 6= X N1

1 (v). Indeed, player 1 has no power over N2 where the items that he is

allocated depend only on the unique best offer to player 2, i.e., X N2
1 (v′) = X N2

1 (v). But

this can only mean v1(X N1
1 (v′)) < v1(X N1

1 (v)) by the definition of a picking-exchange

mechanism and the fact that there are no subsets of equal value. So in total,

v1(X1(v′)) < v1(X1(v)).

(c) X N1∪N2
1 (v′) = X N1∪N2

1 (v), but X E1∪E2
1 (v′) 6= X E1∪E2

1 (v). By the definition of picking-

exchange mechanisms, player 1 can never force an exchange that is good for him but

not for player 2. That is, by deviating he will lose one or more exchanges that were

good for him, and/or force one or more exchanges that were bad for him. We conclude

it is the case where v1(X E1∪E2
1 (v′)) < v1(X E1∪E2

1 (v)), and therefore, v1(X1(v′)) < v1(X1(v)).

(d) X N1∪N2
1 (v′) 6= X N1∪N2

1 (v), and X E1∪E2
1 (v′) 6= X E1∪E2

1 (v). By the fact that we are restricted

to V 6=
m , we can derive that the “picking part” on N1 ∪N2 and the “exchange part” on

E1∪E2 are independent. So, by cases (b) and (c) above we have v1(X N1
1 (v′)) < v1(X N1

1 (v))

and v1(X E1∪E2
1 (v′)) < v1(X E1∪E2

1 (v)). Therefore, v1(X1(v′)) < v1(X1(v)).

We conclude that every picking-exchange mechanism on V 6=
m is truthful.

Remark A.0.1. With only slight modifications of the above proof, we have that for

general additive valuations every picking-exchange mechanism is truthful when using

the following two interesting families of tie-breaking rules:

Tie-breaking with labels. Every set in O1 ∪O2 has a distinct label, and whenever

argmaxS∈Oi
vi (S) is not a singleton, player i receives the set with the smallest label.

Further, every deal in D has a label with five possible values, each indicating one

of the following: (i) the exchange takes place every time it is not unfavorable, (ii) it

only takes place every time it is not unfavorable and at least one player is strictly

improved, (iii) it only takes place every time it is not unfavorable and player 1 is

118 Appendix A. Missing Material from Section 3.1

strictly improved, (iv) it only takes place every time it is not unfavorable and player 2

is strictly improved, and (v) it only takes place every time it is favorable.

Welfare maximizing tie-breaking. When argmaxS∈Oi
vi (S) is not a singleton, player i

receives the set that leaves in Ni as much value as possible for the other player. If

there are still ties, labels are used to resolve those. Further, for every deal in D the

exchange takes place every time it is not unfavorable and at least one player is strictly

improved.

Proof of Lemma 3.1.8. Let v = (v1, v2) be a profile such that both players strongly

desire S and S ⊆ X1(v) (the case where S ⊆ X2(v) is symmetric). We first prove the

statement for T = S. Let v′ = (v ′
1, v ′

2) be any profile in which player 1 strongly desires

S, i.e., v ′
1x >∑

y∈M S v ′
1y ,∀x ∈ S. Initially, consider the intermediate profile v∗ = (v1, v ′

2).

If S ∩ X2(v∗) 6= ; then player 2 would deviate from profile v to v∗ in order to strictly

improve his total utility. So by truthfulness we derive that S ⊆ X1(v∗). Similarly, in

the profile v′, if S ∩ X2(v′) 6= ; then player 1 would deviate from v′ to v∗ in order to

strictly improve. Thus by truthfulness we have S ⊆ X1(v′). We conclude that player 1

controls S.

Now, suppose that v′′ = (v ′′
1 , v ′′

2) is any profile in which player 1 strongly desires

T (S. If T * X1(v′′) then player 1 could strictly improve his utility by playing v ′
1

from before (i.e., he declares that he strongly desires S) and getting S) T . Thus, by

truthfulness, T ⊆ X1(v′′), and we conclude that player 1 controls T .

Proof of Corollary 3.1.10. From the definition of the Ci s and Corollary 3.1.9, C1 ∪
C2 = M follows. On the other hand, if z ∈C1 ∩C2, then there exist a set A ∈A1, such

that z ∈ A, and a set B ∈ A2 such that z ∈ B . By Lemma 3.1.8, this implies that the

singleton {z} is controlled by both players, which is a contradiction. Thus, we have

C1 ∩C2 =;.

Proof of Lemma 3.1.11. Due to symmetry, it suffices to prove the statement for

i = 1. If N1 = ; then the statement is trivially true. So assume N1 6= ; and suppose

that the statement does not hold. That is, there exists a profile v = (v1, v2) such that

for any S ∈O1 we have X N1
1 (v) * S. This means X N1

1 (v) 6= ;. Since the sets in O1 cover

N1, there exists S′
such that S′∩ X N1

1 (v) 6= ;. Let Z be a maximum cardinality such

intersection between some S′ ∈O1 and X N1
1 (v), and x be any element of X N1

1 (v) Z . Note

that x is guaranteed to exist since X N1
1 (v) is not contained in any set of O1. Also, there

is no S′′ ∈O1 such that Z ∪ {x} ⊆ S′′
due to the maximality of Z .

The generic values that may appear in v restrict our ability to argue about the

allocation, so our first goal is to reach a profile u that contradicts the lemma’s state-

ment, like v, but has appropriately selected values. Then, having u as a starting point

we can create profiles in which the allocations contradict truthfulness.

Appendix A. Missing Material from Section 3.1 119

Now, recall that in profile v, player 1 gets Z ∪ {x} (notice that he may get more

items as well), and consider profiles v′ = (v i
1, v2) and v′′ = (v ii

1, v2), where

Z x M (Z ∪ {x})

v i
1 — m2

— m — 1 —

and

Z x M (Z ∪ {x})

v ii
1 — m — m2

— 1 —

By truthfulness, player 1 continues to get Z ∪ {x} in both cases, i.e., Z ∪ {x} ⊆ X N1
1 (v′)

and Z ∪ {x} ⊆ X N1
1 (v′′).

We proceed by changing the values of player 2 this time. Assuming that M (Z ∪
{x}) = {i1, i2, . . . , i`} let fi j = m if i j ∈ X2(v′′) and fi j = 1 otherwise. Consider the next

profile u = (v ii
1, v i

2):

Z x M (Z ∪ {x})

v ii
1 — m — m2

— 1 —

v i
2 — 1 — m2 fi1 , . . . , fi`

Now notice that player 1 must get item x, since x ∈ N1 and thus he controls {x}. On

the other hand, since player 2 can not get x he must continue to get at least the items

in X2(v′′) by truthfulness (otherwise he would play v2 instead). Since this the case,

he can not get a strict superset of X2(v′′) either. Indeed, if this was not the case he

would deviate from v′′ to u. So we can conclude that X2(u) = X2(v′′).
Now we move to a profile u′ = (v i

1, v ii
2) where eventually player 2 gets item x:

Z x M (Z ∪ {x})

v i
1 — m2

— m — 1 —

v ii
2 — m2

— m2 fi1 , . . . , fi`

In u′
, both players strongly desire Z ∪ {x}. But player 1 cannot get both set Z and

item x, or by Lemma 3.1.8 he controls Z ∪ {x} and thus Z ∪ {x} ⊆ S for some S ∈ O1.

However, he controls Z , since there exists some S′ ∈O1 such that Z = S′∩X N1
1 (v) ⊆ S′

.

So, player 1 has to get Z since he strongly desires it, and item x is given to player 2

(probably with other items in M (Z ∪ {x}).

Finally, consider our final profile u′′ = (v i
1, v i

2)

Z x M (Z ∪ {x})

v ii
1 — m2

— m — 1 —

v ii
2 — 1 — m2 fi1 , . . . , fi`

By truthfulness, player 2 must get item x, or he would deviate from u′′
to u′

. How-

ever, now player 1 can strictly improve his utility by deviating from profile u′′
to u,

120 Appendix A. Missing Material from Section 3.1

something that contradicts truthfulness.

Proof of Lemma 3.1.12. Due to symmetry, it suffices to prove the statement for

i = 1. If N1 =; then the statement is trivially true. So assume N1 6= ; and suppose,

towards a contradiction, that the statement does not hold. That is, there exists a pro-

file v = (v1, v2) such that X N1
1 (v) ∉ argmaxS∈O1

v1(S). We consider two cases, depending

on whether X N2
2 (v) is in O2 or not. In both cases, we create a series of deviations that

eventually contradict truthfulness. Like in the proof of Lemma 3.1.11, our first goal

is to reach a profile u that contradicts the statement, like v, but has appropriately

selected values. Using u as a starting point we create profiles in which the allocations

dictated by truthfulness are in conflict.

Case 1. Assume X N2
2 (v) ∈ O2 (note that this includes the case where O2 = {;}). Intu-

itively this is the case where the two players trade value between N1 and E2.

Consider the profile v′ = (v1, v i
2), where

X N1
1 (v) X N1

2 (v) X N2
1 (v) X N2

2 (v) E1 X E2
1 (v) X E2

2 (v)

v i
2 — m — — m3

— — m — — m4
— — 1 — — m2

— — m4
—

By truthfulness, X2(v′) ⊇ X N1
2 (v)∪X N2

2 (v)∪X E2
2 (v). This implies X N2

2 (v′) = X N2
2 (v) due to

the maximality of X N2
2 (v) and Lemma 3.1.11, as well as X N1

1 (v′) ⊆ X N1
1 (v). The latter

implies that X N1
1 (v′) ∉ argmaxS∈O1

v1(S).

Claim A.0.2. X E2
1 (v′) 6= ;.

Proof of Claim A.0.2. Suppose X E2
1 (v′) = ; and let S′ ∈ argmaxS∈O1

v1(S). Then player

1, whose total received value in v′ would be strictly less than v1(S′∪ (X N2
1 (v))∪E1),

could force the mechanism to give him at least that by playing

S′ N1 S′ N2 E1 E2

v i
1 — m — — 1 — — 1 — — m — — 1 —

By the definition of N1, N2, E1, and Lemma 3.1.11, player 1 gets S′
, N2 X N2

2 (v), and

E1 (and possibly something from E2). Since this contradicts truthfulness, it must be

the case that X E2
1 (v′) 6= ;. (In fact, this settles Case 1 when E2 =;.) /

Next, let S1 ∈O1 be such that X N1
1 (v′) ⊆ S1 (they could possibly be equal). Consider

the profile u = (v ii
1, v i

2), where

X N1
1 (v′) S1 X N1

1 (v′) N1 S1 N2 X E1
1 (v′) X E1

2 (v′) X E2
1 (v′) X E2

2 (v′)

v ii
1 — m — — 1+m−1

— — 1 — — 1 — — m3
— — 1 — — m2

— — 1 —

Notice that S1 is the unique set in argmaxS∈O1
v ii

1(S). By truthfulness, X1(u) ⊇ X N1
1 (v′)∪

X E1
1 (v′)∪X E2

1 (v′).

Appendix A. Missing Material from Section 3.1 121

Claim A.0.3. S1 * X1(u), and therefore X N1
1 (u) ∉ argmaxS∈O1

v ii
1(S).

Proof of Claim A.0.3. Suppose S1 ⊆ X1(u). By Lemma 3.1.11 this means S1 = X N1
1 (u).

Then player 2, whose total received value in u would be strictly less than v ii
2((N1

S1)∪X N2
2 (v′)∪X E2

2 (v′))+m, could force the mechanism to give him more than that by

playing

N1 X N2
1 (v′) X N2

2 (v′) E1 E2

v ii
2 — 1 — — 1 — — m — — 1 — — m —

By the definition of N2, E2, in v′′ = (v ii
1, v ii

2) player 2 gets X N2
2 (v′) and E2 (and possibly

something from N1 and E1). Given that, the maximum value that player 1 could

achieve in v′′ is v ii
1(S1 ∪X N2

1 (v′)∪E1) and there is no subset of M (X N2
2 (v′)∪E2) giving

this value other than S1 ∪ X N2
1 (v′)∪E1. In fact, player 1 can achieve exactly this by

increasing his reported value for each item in S1∪E1 to m3
. Thus X1(v′′) = S1∪X N2

1 (v′)∪
E1 and v ii

2(X2(v′′)) = v ii
2((N1 S1) ∪ X N2

2 (v′) ∪ E2) ≥ v ii
2((N1 S1) ∪ X N2

2 (v′) ∪ X E2
2 (v′)) + m2

.

Since this contradicts truthfulness, it must be the case that S1 * X1(u) (and thus

X N1
1 (u) ∉ argmaxS∈O1

v ii
1(S)). /

Claim A.0.3 implies that S1 X N1
1 (u) 6= ;. Since the sets in O1 have empty inter-

section, there must exist some T ∈ O1 such that S1 X N1
1 (u) * T . We are going to

concentrate most of player 2’s value from N1 on W = (S1 X N1
1 (u)) T ⊆ X N1

2 (u). Notice

that W 6= ;.

So consider the profile u′ = (v ii
1, v iii

2), where

N1 W W X N2
1 (v) X N2

2 (v) E1 X E2
1 (v′) X E2

2 (v′)

v iii
2 — m — — m3

— — m — — m4
— — 1 — — m2

— — m4
—

By the definition of N2, E2 and truthfulness, X2(u′) ⊇W ∪X N2
2 (v)∪X E2

2 (v′).

Claim A.0.4. X E2
1 (u′) 6= ;.

Proof of Claim A.0.4. This proof is very similar to the proof of Claim A.0.2. Suppose

X E2
1 (u′) =;. Then player 1, whose total received value in u′

would be strictly less than

v ii
1(S1 ∪X N2

1 (v)∪E1), could force the mechanism to give him at least that by playing

S1 N1 S1 N2 E1 E2

v iii
1 — m — — 1 — — 1 — — m — — 1 —

Since this contradicts truthfulness, it must be the case where X E2
1 (u′) 6= ;. /

Before we examine the final profile of the proof, let us consider the following simple

profile u′′ = (v iv
1 , v iv

2):

122 Appendix A. Missing Material from Section 3.1

T N1 T X N2
1 (v) X N2

2 (v) E1 X E2
1 (u′) X E2

2 (u′)

v iv
1 — m — — 1 — — 1 — — 1 — — 1 — — m2

— — 1 —

v iv
2 — 1 — — 1 — — 1 — — m — — 1 — — m — — m —

By the definition of N2, E2, in u′′
player 2 gets X N2

2 (v) and E2 (and possibly something

from N1 and E1). Given that, the maximum value that player 1 could achieve in u′′

is |T | ·m + |X N2
1 (v)∪E1|, and there is no subset of M (X N2

2 (v)∪E2) giving this value

other than T ∪ X N2
1 (v)∪E1. In fact, player 1 can achieve exactly this by increasing

his reported value for each item in T ∪E1 to m3
. Thus X1(u′′) = T ∪ X N2

1 (v)∪E1 and

X2(u′′) = (N1 T)∪X N2
2 (v)∪E2.

The final profile we need is u′′′ = (v iv
1 , v iii

2), and the contradiction follows from the

allocation of the items in X E2
1 (u′). If X E2

1 (u′) * X1(u′′′) then player 1 has incentive

to deviate to profile u′ = (v ii
1, v iii

2). So, it must be the case where X E2
1 (u′) ⊆ X1(u′′′),

and therefore v iii
2 (X2(u′′′)) ≤ v iii

2 (M X N2
1 (u′)) < v iii

2 (W ∪ X N2
2 (v)∪ X E2

2 (u′))+m2
. On the

other hand, notice that W ⊆ N1 T . Using the allocation for u′′
we derived above, by

truthfulness we have that v iii
2 (X2(u′′′)) ≥ v iii

2 (W ∪X N2
2 (v)∪E2) ≥ v iii

2 (W ∪X N2
2 (v)∪X E2

2 (u′))+
m2

, which is a contradiction.

Case 2. Assume X N2
2 (v) ∉ O2. Case 1 implies that not only X N1

1 (v) ∉ argmaxS∈O1
v1(S)

but X N1
1 (v) ∉O1. Intuitively this is the case where the two players trade value between

N1 and N2. The proof uses a sequence of profiles similar to Case 1.

Consider the profile v′ = (v1, v i
2), where

X N1
1 (v) X N1

2 (v) X N2
1 (v) X N2

2 (v) E1 E2

v i
2 — 1 — — m2

— — m — — m3
— — 1 — — 1 —

By truthfulness, X2(v′) ⊇ X N1
2 (v)∪ X N2

2 (v). This implies X N1
1 (v′) ⊆ X N1

1 (v), and thus

X N1
1 (v′) ∉O1. By Case 1, this means that X N2

2 (v′) ∉O2.

Next, let S1 ∈O1 be a minimal set of O1 such that X N1
1 (v′) ⊆ S1. Since X N1

1 (v′) ∉O1,

we have X N1
1 (v′)(S1. Consider the profile u = (v i

1, v i
2), where

X N1
1 (v′) S1 X N1

1 (v′) N1 S1 X N2
1 (v′) X N2

2 (v′) E1 E2

v i
1 — m — — 1+m−1

— — 1 — — m — — 1 — — 1 — — 1 —

Notice that S1 is the unique set in argmaxS∈O1
v i

1(S). By truthfulness, X1(u) ⊇ X N1
1 (v′)∪

X N2
1 (v′).

Claim A.0.5. S1 * X1(u), and therefore X N1
1 (u) ∉ argmaxS∈O1

v i
1(S).

Proof of Claim A.0.5. This is similar to the proof of Claim A.0.3.Suppose S1 ⊆ X1(u).

By Lemma 3.1.11 this means S1 = X N1
1 (u). Then player 2, whose total received value

in u would be strictly less than v i
2(X N2

2 (v′))+m, could force the mechanism to give

Appendix A. Missing Material from Section 3.1 123

him at least that by playing

N1 N2 S2 S2 E1 E2

v ii
2 — 1 — — 1 — — m — — 1 — — m —

where S2 ∈ O2 is such that X N2
2 (v′) ⊆ S2. By the definition of N2, E2, in v′′ = (v i

1, v ii
2)

player 2 gets S2 and E2 (and possibly something from N1 and E1). Note, however, that

X N2
2 (v′) ∉ O2 and thus X N2

2 (v′) (S2. Therefore, v i
2(X2(v′′)) ≥ v i

2(S2) ≥ v i
2(X N2

2 (v′))+m.

Since this contradicts truthfulness, it must be the case that S1 * X1(u) (and thus

X N1
1 (u) ∉ argmaxS∈O1

v i
1(S)). /

This implies that S1 X N1
1 (u) 6= ;. Since the sets in O1 have empty intersection,

there must exist some T ∈ O1 such that S1 X N1
1 (u) * T . We are going to concentrate

most of player 2’s value from N1 on W = (S1 X N1
1 (u)) T 6= ;. So consider the profile

u′ = (v i
1, v iii

2), where

N1 W W X N2
1 (u) X N2

2 (u) E1 E2

v iii
2 — 1 — — m2

— — m — — m3
— — 1 — — 1 —

By truthfulness, X2(u′) ⊇ W ∪ X N2
2 (u). This implies that S1 * X1(u′) and thus

X N1
1 (u′) ∉ argmaxS∈O1

v i
1(S). By Case 1, this means that X N2

2 (u′) ∉ O2. Therefore,

X N2
1 (u′) 6= ;.

Now let S′
2 ∈ O2 is such that X N2

2 (u′) (S′
2. Before we examine the final profile of

the proof, let us consider the following profile u′′ = (v ii
1, v iv

2):

T N1 T N2 S′
2 S′

2 X N2
2 (u′) X N2

2 (u′) E1 E2

v ii
1 — m — — 1 — — m2

— — m2
— — 1 — — 1 — — 1 —

v iv
2 — 1 — — 1 — — 1 — — m — — m — — 1 — — m —

By the definition of N2, E2, in u′′
player 2 gets S′

2 and E2 (and possibly something

from N1 and E1). Given that, the maximum value that player 1 could achieve in u′′

is |T | ·m +|N2 S′
2| ·m2 +|E1|. In fact, player 1 can achieve exactly this by increasing

his reported value for each item in T ∪E1 to m3
. Thus X1(u′′) = T ∪ (N2 S′

2)∪E1 and

X2(u′′) = (N1 T)∪S′
2 ∪E2.

The final profile we need is u′′′ = (v ii
1, v iii

2), and the contradiction follows from the

allocation of the items in X N2
1 (u′). If X N2

1 (u′) * X1(u′′′) then player 1 has incentive to

deviate to profile u′ = (v i
1, v iii

2). So, it must be the case where X N2
1 (u′) ⊆ X1(u′′′) and

therefore v iii
2 (X2(u′′′)) ≤ v iii

2 (M X N2
1 (u′)) < |W |·m2+|X N2

2 (u)|·m3+m. On the other hand,

notice that W ⊆ N1 T and recall that X N2
2 (u) ⊆ X N2

2 (u′) (S′
2. Using the allocation for

u′′
we calculated above, by truthfulness we have that v iii

2 (X2(u′′′)) ≥ v iii
2 ((N1 T)∪S′

2) ≥
|W | ·m2 +|X N2

2 (u)| ·m3 +m, which is a contradiction.

124 Appendix A. Missing Material from Section 3.1

Proof of Lemma 3.1.13. Suppose that this not true. So there are profiles v = (v1, v2),

v′ = (v ′
1, v ′

2) ∈ V 6=
m such that vi j = v ′

i j for all i ∈ {1,2} and j ∈ E1 ∪E2, but X E1∪E2
1 (v) 6=

X E1∪E2
1 (v′). In such a case, either v = (v1, v2), v̂ = (v ′

1, v2), or v̂ = (v ′
1, v2),v′ = (v ′

1, v ′
2)

is also a pair of profiles that violates the statement. Without loss of generality we

assume that v, v̂ is such a pair, and that v1(X E1
1 (v)) > v1(X E1

1 (v̂)). Now let S1, Ŝ1 ∈O1 be

the single best offer in each case. If S1 = Ŝ1 then player 1 would deviate from v̂ to v and

strictly improve. So assume that S1 6= Ŝ1 and multiply the values in E1 ∪E2 for player

1 with a large enough constant K , so that K
(
v̂1(X E1

1 (v))− v̂1(X E1
1 (v̂))

)> v̂1(N1 ∪N2).

Call v∗ = (v∗
1 , v2) and v̂∗ = (v ′∗

1 , v2) the new profiles and notice that they are still in

V 6=
m . Also, it is easy to see that truthfulness implies X1(v) = X1(v∗) and X1(v̂) = X1(v̂∗).

Indeed, by Lemma 3.1.12, we have X N1∪N2
1 (v) = X N1∪N2

1 (v∗), and if it was the case

where X E1∪E2
1 (v) 6= X E1∪E2

1 (v∗), then player 1 would deviate from profile v to v∗ or vice

versa to strictly improve his utility. The same holds for v̂ to v̂∗.

Now, however, player 1 would deviate from v̂∗ to v∗ in order to improve by at least

v̂∗
1 (X E1

1 (v∗))− v̂∗
1 (X E1

1 (v̂∗))− v̂∗
1 (N1∪N2) = K

(
v̂1(X E1

1 (v))− v̂1(X E1
1 (v̂))

)− v̂1(N1∪N2) > 0, and

this contradicts truthfulness.

Remark A.0.6. Since we are talking about XE in many of the following proofs, it is

correct to write X E1∪E2
i (·), not Xi (·). For the sake of readability, though, we drop the

superscript wherever it is not necessary. Similarly, in order to avoid the unnecessary

use of extra symbols, we prove the statements for m items, although in Subsection

3.1.2 XE is a mechanism on `≤ m items.

Remark A.0.7. For most of the following proofs we need to construct profiles in V 6=
m .

To facilitate the presentation, however, the valuation functions we construct only use

a few powers of m. As a result, the corresponding profiles typically are not in V 6=
m .

Still, this is without loss of generality; when defining such valuation functions we

can add 2i /2κ to the value of item i , for i ∈ [m]. When κ ∈N is large enough (usually

κ = m +1 suffices), our arguments about the allocation are not affected, and a strict

preference over all subsets is induced.

Proof of Lemma 3.1.14. Let v = (v1, v2) ∈ Vm, and consider the intermediate profile

v∗ = (v ′
1, v2) where v ′

1x = m, if x ∈ X1(v), and v ′
1x = 1 otherwise. By truthfulness, we

have that X1(v∗) = X1(v). By defining v ′
2 in a similar way (i.e., v ′

2x = m, if x ∈ X2(v),

and v ′
2x = 1 otherwise), we get the profile v′ = (v ′

1, v ′
2). Again by truthfulness, we have

X (v′) = X (v). If v∗ and v′ where defined as described in Remark A.0.7, the same

arguments would apply, and moreover, v′ ∈ V 6=
m .

Proof of Lemma 3.1.15. To show that D is indeed a valid set of exchange deals, we

need to show that for any two distinct deals (S,T), (S′,T ′) ∈ D we have S∩S′ = T ∩T ′ =;
and S,T,S′,T ′

are all nonempty. The latter is straightforward due to truthfulness and

the fact that all values are positive. The former is done through the next three

Appendix A. Missing Material from Section 3.1 125

lemmata, the first of which states that each minimally exchangeable set is involved

in exactly one exchange deal.

Lemma A.0.8. If S ⊆ E1 is a minimally exchangeable set, then there exists a unique

T ⊆ E2 such that (S,T) is a feasible exchange.

The lemma is stated in terms of minimally exchangeable subsets of E1, but due to

symmetry it is true for all minimally exchangeable sets. This is done for the following

statements as well, for the sake of readability. The three lemmata are proved right

after this proof.

It is implied that every minimally exchangeable set appears in exactly one ex-

change deal in D. The second lemma, below, guarantees that minimally exchangeable

sets can be exchanged only with minimally exchangeable sets.

Lemma A.0.9. Let S ⊆ E1 be a minimally exchangeable set and (S,T) be the only

feasible exchange involving S. Then T is a minimally exchangeable set as well.

The result of the two lemmata combined is that D = {(S1,T1), (S2,T2), . . . , (Sk ,Tk)},

where S1, . . . ,Sk ,T1, . . . ,Tk are all the minimally exchangeable sets and are all different

from each other. What is still needed is that the intersection between any two mini-

mally exchangeable sets is always empty. The third lemma states something stronger

(that is indeed needed later in the proof of A.0.12), namely that the intersection be-

tween a minimally exchangeable set and any other exchangeable set is always empty,

unless the latter contains the former.

Lemma A.0.10. Let S ⊆ E1 be a minimally exchangeable set and S′ ⊆ E1 be an ex-

changeable set such that S′∩S 6= ;. Then S ⊆ S′
.

If the intersection between any two minimally exchangeable sets was nonempty,

then by Lemma A.0.10 one is contained in the other, which contradicts minimality.

We can conclude that D is a valid set of exchange deals.

Proof of Lemma A.0.8. Suppose that this does not hold. Without loss of generality,

assume that there is some S1 ⊆ E1 and two profiles vi = (v i
1, v i

2) and vii = (v ii
1, v ii

2), such

that X E1
1 (vi) = E1 S1 = X E1

1 (vii) and X E2
1 (vi) = S2 6= S′

2 = X E2
1 (vii).

For the sake of readability, let A = S2 S′
2, B = S2∩S′

2, C = S′
2 S2, and D = M (S2∪S′

2).

Since S2 6= S′
2, either A 6= ; or C 6= ;. Without loss of generality, suppose that A 6= ;.

Using this notation, X1(vi) = (E1 S1)∪ A ∪B and X2(vi) = S1 ∪C ∪D, while X1(vii) =
(E1 S1)∪B ∪C and X2(vii) = S1 ∪ A∪D.

We proceed to profile viii = (v i
1, v iii

2) by changing the values of player 2:

E1 S1 S1 A B C D

v iii
2 — 1 — — m2

— — 1 — — 1 — — m3
— — m3

—

126 Appendix A. Missing Material from Section 3.1

Since the most valuable items of player 2 are those which he was allocated in profile

vi
, by truthfulness, he should still get them, but he should not get any other item.

Thus XE (viii) =XE (vi).

We move to profile viv = (v iii
1 , v iii

2) by changing the values of player 1:

E1 S1 S1 A B C D

v iii
1 — m3

— — m — — m2
— — 1 — — 1 — — 1 —

By truthfulness we have that player 1 must get E1 S1 and A (or else he could deviate to

profile viii
and strictly improve). Since he gets A, an exchange takes place. Due to the

minimality of S1, we can derive that player 2 receives the whole S1. In addition, player

2 continues to get D, since he strongly desires it and D ⊆ E2. So we can conclude that

(E1 S1)∪ A ⊆ X1(viv) and S1 ∪D ⊆ X2(viv), while we do not care about the allocation of

the remaining items.

Now let us return to profile vii = (v ii
1, v ii

2). Starting from here, we change the values

of player 2 and to get profile vv = (v ii
1, v iv

2).

E1 S1 S1 A B C D

v iv
2 — 1 — — m — — m2

— — 1 — — 1 — — m2
—

By truthfulness, like in profile viii
, we have XE (vv) =XE (vii).

Next, we proceed to profile vvi = (v iv
1 , v iv

2), where

E1 S1 S1 A B C D

v iv
1 — m4

— — m — — m3
— — m2

— — m2
— — 1 —

Player 2 continues to get A,D since he strongly desires them and A,D ⊆ E2. By the

same argument, player 1 gets E1 S1. Additionally, we know that an exchange happens

(otherwise player 1 would deviate to profile vv
in order to get the items of B ∪C), so

player 2 gets set the whole S1 due to its minimality. Thus we can conclude that

X1(vvi) = (E1 S1)∪B ∪C and X2(vvi) = S1 ∪ A∪D.

Next, we move to profile vvii = (v iv
1 , vv

2) by changing player 2 this time:

E1 S1 S1 A B C D

vv
2 — 1 — — m2

— — m — — 1 — — 1 — — m3
—

By truthfulness, the allocation does not change, i.e., X1(vvii) = (E1 S1)∪B ∪C and

X2(vvii) = S1 ∪ A∪D.

Finally, we move to profile vviii = (v iii
1 , vv

2) by changing the values of player 1 back

to the values that he had in profile viv
. Now recall that X2(viv) ⊇ S1 ∪D. Since in this

profile S1 ∪D contains player 2’s most valuable items, he must continue to get them

by truthfulness. This means that there is an exchange. Player 1 however must get

some items from A in any exchange; if not he can declare that he strongly desires E1

Appendix A. Missing Material from Section 3.1 127

and strictly improve. This, however, contradicts the truthfulness of the mechanism,

since player 1 can deviate from vvii
to vviii

and become strictly better.

Proof of Lemma A.0.9. Suppose that this does not hold, i.e., there exists some min-

imally exchangeable S1 ∈ E1, such that (S1,S2) is the only feasible exchange involving

S1, but S2 is not minimally exchangeable. So there exists S′
2 ⊆ S2 that is minimally

exchangeable. So let S′
1 be such that (S′

1,S′
2) is a feasible exchange (notice that S1 6= S′

1

by lemma A.0.8).

For the sake of readability, let A = E1 (S1 ∪S′
1), B = S′

1 ∩S1, C = S1 S′
1, D = S2 ∩S′

2,

E = S′
2, and F = S2 S′

2.

So there is a profile vi = (v i
1, v i

2), where X1(vi) = (E1 S1)∪ S2 = A ∪B ∪E ∪F and

X2(vi) = (E2 S2)∪S1 =C ∪D ∪ (E2 S2). Also there is another profile vii = (v ii
1, v ii

2) where

X1(vii) = (E1 S′
1)∪S′

2 = A∪D ∪E and X2(vii) = (E2 S′
2)∪S′

1 = B ∪C ∪F ∪ (E2 S2).

We start from profile vi = (v i
1, v i

2) and we proceed to profile viii = (v iii
1 , v i

2) by changing

the values of player 1:

A B C D E F E2 S2

v iii
1 — m4

— — m4
— — m — — m — — m3

— — m2
— — 1 —

Since player’s 1 most valuable items are those he was allocated in profile vi
, due to

the truthfulness of the mechanism, he must continue to get them while not getting

any other item. Thus the allocation does not change, i.e., X1(viii) = A ∪B ∪E ∪F and

X2(viii) =C ∪D ∪ (E2 S2).

Next, move to profile viv = (v iii
1 , v iii

2) by changing the values of player 2:

A B C D E F E2 S2

v iii
2 — m — — m4

— — m — — m3
— — 1— — m2

— — m5
—

Player 2 must get E2 S2 since he strongly desires them and E2 S2 ⊆ E2. Similarly,

player 1 gets A∪B . Moreover, we know that an exchange should take place (otherwise

player 2 would deviate to viii
and become strictly better). What can be exchanged from

E1 is a subset of C ∪D, and since C ∪D = S1 is minimal, it is exchanged with S2 = E ∪F

(the only set that is exchangeable with S1, by Lemma A.0.8). Thus we conclude that

the allocation here is X1(viv) = A∪B ∪E ∪F and X2(viv) =C ∪D ∪ (E2 S2).

Finally we move to profile vv = (v iv
1 , v iii

2), by changing the values of player 1:

A B C D E F E2 S2

v iv
1 — m4

— — m2
— — m — — m — — m3

— — m2
— — 1 —

By truthfulness, like above, the allocation does not change, i.e., X1(vv) = A∪B ∪E ∪F

and X2(vv) =C ∪D ∪ (E2 S2).

128 Appendix A. Missing Material from Section 3.1

Now let us return to profile vii = (v ii
1, v ii

2). Starting from this profile we change the

values of player 2 to get profile vvi = (v ii
1, v iv

2).

A B C D E F E2 S2

v iv
2 — 1 — — m3

— — 1 — — 1 — — m— — m2
— — m4

—

Player 2 must get (at least) B ∪F ∪(E2 S2) since else he could deviate to profile vii
and

become strictly better. Now since player 1 loses B we know that an exchange takes

place with some of the available items in E . By the minimality of E = S′
2, player 1 gets

the whole E and he loses B ∪C = S′
1. Thus we can conclude that the allocation here is

X1(vvi) = A∪D ∪E , X2(vvi) = B ∪C ∪F ∪ (E2 S2).

In order to conclude, we move to profile vvii = (v iv
1 , v iv

2) by changing the values of

player 1 back to what he played in vv
,

A B C D E F E2 S2

v iv
1 — m4

— — m2
— — m — — m — — m3

— — m2
— — 1 —

v iv
2 — 1 — — m3

— — 1 — — 1 — — m— — m2
— — m4

—

Player 2 gets E2 S2 because he strongly desires it. We also know that an exchange

should take place, otherwise player 1 would deviate to vvi
and strictly improve his total

value. As a result, player 2 gets at least one item from set B , or he could increase to

m4
his value for any item in E2 and improve by getting E2. However, now player 2 can

deviate from profile vv
to vvii

and become strictly better, something that contradicts

the truthfulness of the mechanism.

Proof of Lemma A.0.10. Suppose that this does not hold, i.e., there exists a mini-

mally exchangeable set S1 ∈ E1 and an exchangeable set S′
1 ∈ E1, such that S1 ∩S′

1 6= ;
and S1 * S′

1. Choose S′
1 to be minimal, i.e., if S′′

1 (S′
1 then either S1∩S′′

1 =; or S′′
1 is not

exchangeable. Let S2,S′
2 be such that (S1,S2), (S′

1,S′
2) are feasible exchanges and S′

2 is

minimal in the sense that there is no S′′
2 (S′

2 where (S′
1,S′′

2) being a feasible exchange.

From Lemmata A.0.8 and A.0.9 we have that S′
2 S2 6= ;.

For the sake of readability, let A = E1 (S1 ∪S′
1), B = S′

1 S1, C = S′
1 ∩S1, D = S1 S′

1,

E = S2 ∩S′
2, F = S2 S′

2, G = E2 (S2 ∪S′
2), and H = S′

2 S2.

So there is a profile vi = (E1 S1)∪S2 = (v i
1, v i

2), where X1(vi) = A∪B ∪E ∪F , X2(vi) =
(E2 S2)∪S1 =C ∪D∪G∪H . There is also a profile vii = (v ii

1, v ii
2), where X1(vii) = (E1 S′

1)∪
S′

2 = A∪D ∪E ∪H , X2(vii) = (E2 S′
2)∪S′

1 = B ∪C ∪F ∪G.

We start from profile vi = (v i
1, v i

2) and we proceed to profile viii = (v i
1, v iii

2) by changing

the values of player 2:

A B C D E F G H

v iii
2 — 1 — — 1 — — m — — m — — 1 — — 1 — — m2

— — m2
—

Appendix A. Missing Material from Section 3.1 129

By truthfulness, we can conclude that the allocation remains the same, i.e., player 1

gets A∪B ∪E ∪F , while player 2 gets C ∪D ∪G ∪H .

Next, we move to profile viv = (v iii
1 , v iii

2) by changing the values of player 1:

A B C D E F G H

v iii
1 — m3

— — m3
— — 1 — — 1 — — m2

— — m2
— — 1 — — m —

Again, by truthfulness player 1 gets A∪B ∪E ∪F , and player 2 gets C ∪D ∪G ∪H .

We continue by moving to profile vv = (v iii
1 , v iv

2) by changing the values of player 2:

A B C D E F G H

v iv
2 — 1 — — m — — m3

— — 1 — — 1 — — m2
— — m4

— — 1 —

Player 2 must get G since he strongly desires it and H ⊆ E2. The same goes for player

1 and A ∪B . Now we know that an exchange should take place, otherwise player 2

would deviate to viii
and become strictly better. Since the only available exchangeable

set here is C ∪D = S1 (because it is minimal), it is exchanged with set S2 = E ∪F (the

only set exchangeable with S1 by lemma A.0.8). Thus we conclude that the allocation

remains the same, player 1 gets A∪B ∪E ∪F , while player 2 gets C ∪D ∪G ∪H .

Next proceed to profile vvi = (v iv
1 , v iv

2) by changing the values of player 1:

A B C D E F G H

v iv
1 — m4

— — m — — 1 — — 1 — — m2
— — m3

— — 1 — — m2
—

we can derive by truthfulness that player 1 must get (at least) A∪F , or else he would

deviate to profile vv
and improve. Currently, this is all what we need to know for vvi

.

Now let us return to profile vii = (v ii
1, v ii

2). Starting from here we change the values

of player 1 to get profile vvii = (vv
1 , v ii

2).

A B C D E F G H

vv
1 — m2

— — 1 — — 1 — — m2
— — m — — 1 — — 1 — — m —

By truthfulness, the allocation remains the same, i.e., player 1 gets A ∪D ∪E ∪ H ,

while player 2 gets B ∪C ∪F ∪G .

We now move to profile vviii = (vv
1 , vv

2) and change the values of player 2.

A B C D E F G H

vv
2 — 1 — — αm3

— — αm4
— — 1 — — m4

— — m5
— — m5

— — m4
—

130 Appendix A. Missing Material from Section 3.1

The values in B ∪C are set in such a way so that vv
2 (B ∪C) > vv

2 (E ∪H), but vv
2 (T) <

vv
2 (E ∪H) for any T (B ∪C .

1

Notice that player 2 must get G ∪F since he strongly desires it. The same goes for

player 1 and A ∪D. We know that an exchange should take place, otherwise player

2 would deviate to vvii
and improve. In this exchange, values are such that player 2

should get the whole S′
1. Thus we conclude that the allocation remains the same, i.e.,

player 1 gets A∪D ∪E ∪H , while player 2 gets B ∪C ∪F ∪G .

We now move to profile vix = (vvi
1 , vv

2) and change the values of player 1.

A B C D E F G H

vvi
1 — m4

— — m — — 1 — — m4
— — m2

— — m3
— — 1 — — m2

—

Again player 2 must get G ∪F . Given that, player 1 gets at least A∪D ∪E ∪H , and by

truthfulness he cannot receive strictly more items. Therefore, the allocation remains

the same, i.e., player 1 gets A∪D ∪E ∪H , while player 2 gets B ∪C ∪F ∪G.

We now move to profile vx = (v iv
1 , vv

2) by changing the values of player 1 back to

what he had at profile vvi
. Recall:

A B C D E F G H

v iv
1 — m4

— — m — — 1 — — 1 — — m2
— — m3

— — 1 — — m2
—

Like above Player 2 gets F ∪G. The same goes for player 1 A. By truthfulness, an

exchange must happen and player 1 gets at least the set E ∪H (else he would deviate

to vix
and improve). Moreover, since player 2 loses E ∪H he must at least get the set

B ∪C . We conclude that player 1 gets A∪E ∪H , player 2 gets B ∪C ∪F ∪G, while we

do not care what happens for items in D.

Now notice that player 2 can deviate from profile vvi
to profile vx

and become

strictly better (recall that at profile vvi
player 2 loses G, while A,D,E , H all have very

small value) and this contradicts truthfulness.

Proof of Lemma 3.1.16. We begin with a direct implication of the Lemmata A.0.8–

A.0.10. Although we are not guaranteed yet that any feasible exchange can be ex-

pressed as a union of exchange deals from D as it should, the following corollary is

a step towards this direction. Recall that S1, . . . ,Sk and T1, . . . ,Tk are all the minimally

exchangeable subsets of E1 and E2 respectively, and that (Si ,Ti) is the only feasible

exchange involving either one of Si and Ti , for every i ∈ [k].

Corollary A.0.11. For every exchangeable set S ⊆ E1, we have that S = W ∪⋃
i∈I Si ,

where I ⊆ [k] with |I | ≥ 1, while W = S
⋃

i∈I Si does not contain any minimally exchange-

able sets. Furthermore, this decomposition is unique.

1
This is always possible. In particular, if |B | > 0 then α = |E∪H |m4−m

(|B |−1)m3+|C |m4 works. If |B | = 0, then

α = |E∪H |m4−m
(|C |−1)m4 . In order to apply the idea mentioned in Remark A.0.7, one can multiply the whole

profile with the denominator of α.

Appendix A. Missing Material from Section 3.1 131

Ideally, we would like two things. First, the W part in the above decomposition

to always be empty, i.e., we want every exchangeable set to be a union of minimally

exchangeable sets (umes for short). Second, we want every umes of E1 to be exchange-

able only with the corresponding umes of E2, and vice versa. To be more precise, we

say that an umes S = ⋃
i∈I Si is nice if it is exchangeable with T = ⋃

i∈I Ti and only

with T . The definition of a nice umes of E2 is symmetric. As it turns out, every umes

is nice, but it takes a rather involved induction to prove it. Especially the fact that(⋃
i∈I Si ,

⋃
i∈I Ti

)
is exchangeable needs a carefully constructed argument about the

value that each player must gain from any exchange (see also Lemma A.0.14).

Lemma A.0.12. Every umes is nice.

Given the above lemma, we can now show that the set W in the decomposition

of Corollary A.0.11 is always empty. In fact the proof idea is the same as the one for

Lemmata A.0.8–A.0.10.

Lemma A.0.13. Every exchangeable set is an umes.

The above two lemmata complete the proof. They are proved below, right after

Lemma A.0.14.

For the following lemmata, recall that umes is short for union of minimally ex-

changeable sets!

Lemma A.0.14. Let (S,T) be a feasible exchange such that S is a nice umes with

the property that if S′ ⊆ S is exchangeable, then S′
is a nice umes. In particular, let

S = ⋃
i∈[r] Si , where Si is minimally exchangeable for all i ∈ [r]. If v is a profile where

(Si ,Ti) is favorable for all i ∈ [r] then (S,T) gives a lower bound on the value gained

from exchanges in profile v for each player.

Proof of Lemma A.0.14. Due to symmetry, it suffices to prove the lower bound for

player 1. Let v = (v1, v2) be a profile like in the statement, where the values are

vi 1, vi 2, ..., vi m for i = 1,2.. Since (S,T) is a feasible exchange, there exists a profile

vi = (v i
1, v i

2) ∈ V 6=
m such that the exchange (S,T) takes place, i.e.,X1(vi) = (E1 S)∪T and

X2(vi) = S ∪ (E2 T). Starting from this profile we will use a series of intermediate

profiles in order to reach v = (v1, v2). Initially consider profile vii = (v ii
1, v i

2) where we

change the values of player 1.

v ii
1 j =

m·maxi v1i

mini v1i
· v1 j if j ∈ E1 S

v1 j if j ∈ S ∪T

mini v1i
m·maxi v1i

· v1 j otherwise

In this profile each item in E1 S has a value which is higher from the sum of the values

in all the other sets. On the other hand, items in E2 T have total value less than

132 Appendix A. Missing Material from Section 3.1

the value of a single item in the other sets.
2

Since this is the case, player 1 must get

E1 S since he strongly desires it. In addition, an exchange must take place, or player

1 could deviate to profile vi
and become strictly better. Thus an exchange takes place

and must involve a subset S′
of S. Now if S′

was a proper subset of S, then it would

be a nice umes, i.e., S′ = ⋃
j∈I S j , I ([r], and it is exchanged only with T ′ = ⋃

j∈I T j .

However, since exchanges S j ,T j , j ∈ [r] I are also favorable, player 1 would deviate

to profile vi
and become strictly better. Therefore, the exchange involves the whole S,

and since S is a nice umes it should be exchanged with T . So the allocation here is

X1(vii) = (E1 S)∪T , X2(vii) = S ∪ (E2 T).

By moving to profile viii = (v ii
1, v2) where we change the values of player 2, we have

that, once again, player 1 must get the items in E1 S. Moreover, an exchange must

take place, or player 2 could deviate to profile vii
and become strictly better (recall

that he prefers S from T). By following the same arguments as in the previous case,

if the exchange involves a proper subset of S, player 2 would deviate to profile vii
and

become strictly better. Hence player 2 gets the whole S, i.e., the allocation here is

again X1(viii) = (E1 S)∪T and X2(viii) = S ∪ (E2 T).

Finally we move to profile v = (v1, v2) by changing the values of player 1. It is easy

to see that if there is no exchange that improves player 1 by at least v1(T)− v1(S),

then he could deviate to profile viii = (v ii
1, v2) and gain exactly that.

Proof of Lemma A.0.12. We will use induction in the number of minimally exchange-

able sets contained in an umes; let us call this number index of the umes. Lemmata

A.0.8 and A.0.9 imply that every umes of index 1 is nice. That is the basis of our

induction.

Assume that every umes of index lower or equal to k is nice and notice that Lemma

A.0.10 implies that every exchangeable subset of an umes is also an umes.

Let S be an umes of index k +1. In particular, let S = ⋃
i∈[k+1] Si , where for any

i ∈ [k+1] we have that Si is minimally exchangeable and (Si ,Ti) is a feasible exchange.

By the inductive hypothesis we have that both S1 and S′ =⋃k+1
i=2 Si are nice umes and

uniquely exchangeable with S1 and T ′ =⋃k+1
i=2 Ti respectively.

We first prove that (S,T) is a feasible exchange. Consider the following profile

v = (v1, v2),

E1 (S′∪S1) S′ S1 T ′ T1 E2 (T ′∪T1)

v1 — ∆ — — δ — — ε — — 1 — — ζ — — δ —

v2 — δ — — n j — — 1 — — θ j — — δ— — ∆ —

where ∆>> 1 >> ζ,n j ,θ j ,ε>> δ>> λi .
3

Regarding the rest values, |T1| ·ζ= |S1| · ε+λ1

and for all j ∈ [k +1] {1} we have that |S j | ·n j = |T j | ·θ j +λ j . Now notice that S′
is a

2
Notice that the values are chosen in a way such that if v ∈ V 6=

m , then vi ∈ V 6=
m as well.

3
In order to be able to apply the idea mentioned in Remark A.0.7, one can use m7

instead of 1, and

∆= m8
, δ= m3

, λi = |Ti | · |Si |, ni = |T j | ·m4
, θi = |S j | · (m4 −1), ζ= |S1| ·m4

, and ε= |T1| · (m4 −1).

Appendix A. Missing Material from Section 3.1 133

nice umes such that every exchangeable S′′ ⊆ S′
is a nice umes and for all j , (S j ,T j)

is a favorable exchange with respect to v. Lemma A.0.14 guarantees that in v, player

1 gains at least v1(T ′)− v1(S′) = |T ′| −δ|S′| from the exchanges. So player 1 gets a

superset of T ′
, i.e., T ′ ⊆ X E2

1 (v). By lemma A.0.10, this means that X E2
1 (v) is either T ′

or T .

On the other hand, if we apply lemma A.0.14 for (S1,T1) we have that in profile

v, player 2 should gain at least v2(S1)− v2(T1) = |S1| −δ|T1| from the exchanges. So,

X E1
2 (v) ⊇ S1. Since T ′

is nice, however, we have that X E2
1 (v) = T ′

implies X E1
2 (v) = S′ + S1.

Therefore, it must be the case where X E2
1 (v)) T ′

or else player 2 does not get enough

value.

We conclude that X E1
2 (v) = T . Now we claim that X E1

2 (v) = S and therefore (S,T) is

a feasible exchange. Indeed, every S′′ (S that is exchangeable is an umes of index

lower or equal to k and therefore is nice. So S′′,T cannot be a feasible exchange, due

to the fact that S′′
has a unique pair T ′′ (T .

Next we show that there is no T̂ 6= T such that (S, T̂) is a feasible exchange. By the

proof so far we have that if such a T̂ existed, then it is not a subset of T . So suppose

that there is a T̂ 6= T such that (S, T̂)is a feasible exchange and let T ∗
be a minimal

such set (that is, if R (T ∗
then (S,R) is not a feasible exchange or R ⊆ T).

Thus there are two profiles vi = (v i
1, v i

2) and vii = (v ii
1, v ii

2) where we have that X E1 (vi) =
(E1 S) = X E1

1 (vii) and X E2
1 (vi) = T ∗ 6= T = X E2

1 (vii).

For the sake of readability, let A = T ∗ T , B = T ∗∩T , C = T T ∗
, D = E2 (T ∗∪T).

We start from profile vi
where the allocation is X1(vi) = (E1 S)∪ A ∪B , X2(vi) =

S ∪C ∪D and we proceed to profile viii = (v i
1, v iii

2) by changing the values of player 2:

E1 S S A B C D

v iii
2 — 1 — — m — — 1 — — 1 — — m2

— — m2
—

By truthfulness, the allocation remains the same, i.e., X1(viii) = (E1 S)∪A∪B , X2(viii) =
S ∪C ∪D.

Next we move to profile viv = (v iii
1 , v iii

2) by changing the values of player 1:

E1 S S A B C D

v iii
1 — m3

— — m — — m2
— — 1 — — 1 — — 1 —

Notice that player 1 must receive E1 S since he strongly desires it. The same goes

for player 2 and C ∪D. Now we know that an exchange should take place and that in

this exchange player 1 must get at least set A = T ∗ T (otherwise he would deviate to

viii
and become strictly better).

We claim that player 1 gets the whole T ∗
. If this was not the case then he would

get some set R ⊇ A 6= ;. Since R (T ∗
and R * T we have that the exchange (S,R) is not

feasible due to the minimality of T ∗
. Thus R is exchanged with some Ŝ (S. However

Ŝ is an umes (by Lemma A.0.8) and by inductive hypothesis it is exchangeable only

134 Appendix A. Missing Material from Section 3.1

with strict subsets of T which is a contradiction. Similarly, player 2 must get set

the whole S, or otherwise he would get some Ŝ (S which is exchangeable only with

strict subsets of T , something that can not happen. Thus the allocation here is

X1(viv) = (E1 S)∪ A∪B , X2(viv) = S ∪C ∪D.

Next we move to profile vv = (v iii
1 , v iv

2) by changing the values of player 2.

E1 S S A B C D

v iv
2 — 1 — — m2

— — 1 — — 1 — — m — — m3
—

By truthfulness, the allocation remains the same, i.e., X1(vv) = (E1 S)∪A∪B , X2(vv) =
S ∪C ∪D.

Now let us return to profile vii = (vii
1,vii

2). Starting from this profile we change the

values of player 2 and get profile vvi = (v ii
1, vv

2).

E1 S S A B C D

vv
2 — 1 — — m — — m2

— — 1 — — 1 — — m2
—

Since player’s 2 most valuable items are those which he was allocated in profile

vii
, by truthfulness, the allocation remains the same, i.e., X1(vvi) = (E1 S)∪B ∪C ,

X2(vvi) = S ∪ A∪D.

Next we move to profile vvii = (v iv
1 , vv

2) by changing the values of player 1.

E1 S S A B C D

v iv
1 — m4

— — m — — m3
— — m2

— — m2
— — 1 —

Notice that player 1 must get E1 S since he strongly desires it. The same goes

for player 2 and A ∪D. Given that, an exchange takes place and in this exchange

player 1 must get the whole B ∪C = T (otherwise he would deviate to vv
and strictly

improve). On the other hand, player 2 must get the whole S, or player 1 would

deviate from vv
to vvi

and strictly improve. Thus the allocation here remains the

same: X1(vvii) = (E1 S)∪B ∪C , X2(vvii) = S ∪ A∪D.

Next we move to profile vviii = (v iv
1 , vvi

2) by changing the values of player 2.

E1 S S A B C D

vvi
2 — 1 — — m2

— — m — — 1 — — 1 — — m3
—

By truthfulness, the allocation remains the same, i.e., X1(vviii) = (E1 S)∪B∪C , X2(vviii) =
S ∪ A∪D.

Finally we move to profile vix = (v iii
1 , vvi

2) by changing the values of player 1 back to

what he had in profile vv
. Recall:

E1 S S A B C D

v iii
1 — m3

— — m — — m2
— — 1 — — 1 — — 1 —

Appendix A. Missing Material from Section 3.1 135

Notice that player 1 must get E1 S since he strongly desires it. The same goes for

player 2 and D. Now if player 1 gets nothing from set A then there is no exchange

at all. However, in this case player 2 would deviate to profile vv
and become strictly

better. Thus player 1 should get at least one item from A. As a result, however,

player 1 would deviate from profile vviii
to vix

and become strictly better, something

that leads to contradiction.

This completes the inductive step.

Proof of Lemma A.0.13. Let S be an exchangeable subset of E1. Then according to

corollary A.0.11 S =⋃
i∈I Si ∪W for some I ⊆ [k], with |I | ≥ 1. We are going to show that

W =;. So suppose, towards a contradiction, that W 6= ;. In fact, choose S so that it

is a minimal exchangeable non-umes subset of E1, i.e., for all S′ (S, S′
is either umes

or non-exchangeable. In addition, notice that W does not contain any exchangeable

sets.

Let T be such that (S,T) is a feasible exchange. In fact let T be a minimal such set,

i.e., for all T ′ (T , either (S,T ′) is not a feasible exchange or T ′
is not exchangeable at

all. Finally, let S∗ =⋃
i∈I Si , T ∗ =⋃

i∈I Ti and notice that T T ∗ 6= ; since otherwise T

would be an umes (as an exchangeable subset of an umes, by Lemma A.0.10).

For the sake of readability, let A = E1 S, B = T T ∗
, C = T ∗∩T , D = T ∗ T , and

E = E2 (T ∪T ∗).

So there are two profiles, vi = (v i
1, v i

2) where X1(vi) = A∪B ∪C , X2(vi) = S∪D∪E and

vii = (v ii
1, v ii

2) where X1(vii) = A∪W ∪C ∪D and X2(vii) = S∗∪B ∪E .

We start from profile vi = (v i
1, v i

2) and we proceed to profile viii = (v i
1, v iii

2) by changing

the values of player 2:

A S∗ W B C D E

v iii
2 — 1 — — m2

— — m2
— — 1 — — 1 — — m3

— — m3
—

Since player’s 2 most valuable items are those which he was allocated in profile vi
, by

truthfulness, the allocation remains the same, i.e., X1(viii) = A∪B∪C , X2(viii) = S∪D∪E .

Next we move to profile viv = (v iii
1 , v iii

2) by changing the values of player 1:

A S∗ W B C D E

v iii
1 — m3

— — m — — m — — m2
— — 1 — — 1 — — 1 —

Now notice that player 1 must get A since he strongly desires it. The same goes for

player 2 and D ∪E . Also we know that an exchange should take place and that in

this exchange player 1 must get at least B = T T ∗
(otherwise he would deviate to viii

).

We claim that player 1 gets the whole T . If this was not the case then he would

get some set R ⊇ B 6= ;. Since R (T and R * T ∗
we have that the exchange (S,R)

is not feasible due to the fact that T is minimal. Thus R should be exchanged with

some Ŝ (S. However, by the minimality of S, Ŝ is an umes and it is exchangeable

136 Appendix A. Missing Material from Section 3.1

only with strict subsets of T ∗
, which is a contradiction. On the other hand, player 2

must get the whole S, or otherwise he would get some Ŝ (S which is exchangeable

only with strict subsets of T ∗
, something that can not happen. Thus the allocation is

X1(viv) = A∪B ∪C and X2(viv) = S ∪D ∪E .

Next we move to profile vv = (v iii
1 , v iv

2) by changing the values of player 2:

A S∗ W B C D E

v iii
2 — 1 — — m2

— — m — — 1 — — 1 — — m2
— — m3

—

Since player’s 2 most valuable items are those which he was allocated in profile viv
,

by the truthfulness of the mechanism, he must continue to get them but he can not

get any other item. Thus the allocation remains the same, i.e., X1(vv) = A ∪B ∪C ,

X2(vv) = S ∪D ∪E .

Now let us return to profile vii = (v ii
1, v ii

2). Starting from this profile we change the

values of player 2 and get profile vvi = (v ii
1, v iv

2):

A S∗ W B C D E

v iv
2 — 1 — — m2

— — m — — m4
— — 1 — — 1 — — m4

—

Again, player’s 2 most valuable items are those which he was allocated in profile vii
.

So, by truthfulness, the allocation remains the same, i.e., X1(vvi) = A∪W ∪C ∪D and

X2(vvi) = S∗∪B ∪E .

Next we move to profile vvii = (v iv
1 , v iv

2) by changing the values of player 1:

A S∗ W B C D E

v iv
1 — m5

— — m — — m2
— — m4

— — m3
— — m3

— — 1 —

Notice that player 1 must get A and player 2 must get B ∪E . Given that, player 1

must get W ∪C ∪D = (otherwise he could deviate to vv
and strictly improve). Thus

the allocation remains the same, i.e., X1(vvii) = A∪W ∪C ∪D and X2(vvii) = S∗∪B ∪E .

Next we move to profile vviii = (v iv
1 , vv

2) by changing the values of player 2:

A S∗ W B C D E

vv
2 — 1 — — m3

— — m — — m2
— — 1 — — 1 — — m4

—

Again, by truthfulness, the allocation remains the same, i.e., X1(vviii) = A∪W ∪C ∪D

and X2(vviii) = S∗∪B ∪E .

Finally we move to profile vix = (v iii
1 , vv

2) by changing the values of player 1 back to

what he had in profile vv
.

A S∗ W B C D E

v iii
1 — m3

— — m — — m — — m2
— — 1 — — 1 — — 1 —

Appendix A. Missing Material from Section 3.1 137

Player 1 must get A and player 2 must get E . Now if player 1 gets nothing from B then

there will be no exchange. However, in this case player 2 would deviate to profile vv

and become strictly better. Thus player 1 should get at least one item from B . As a

result, player 1 would deviate from profile vviii
to vix

and strictly improve, something

that leads to contradiction.

Proof of Lemma 3.1.17. Without loss of generality, assume that (S1,T1), ..., (Sr ,Tr)

is the set of all favorable exchanges. Then (S,T) where S = ⋃
i∈[r] Si and T = ⋃

i∈[r] Ti

will give a lower bound on the value of each player. Indeed, S is an umes an using

Lemmata A.0.14 and A.0.12, we have that player 1 should gain at least v1(T)−v1(S),

while player 2 should gain at least v2(S)− v2(T) from the exchanges.

Since v ∈ V 6=
m , it suffices to show that v1(X1(v)) = v1((E1∪T) S) = v1(E1)+v1(T)−v1(S).

So suppose that v1(X1(v)) > v1(E1)+v1(T)−v1(S) and notice that this also implies that

v2(X2(v)) > v2(E2)+v2(S)−v2(T), since otherwise it would be v2(X2(v)) = v2(E2)+v2(S)−
v2(T) and we have the desired allocation.

As a result, there exists some S∗ ⊆ X E1
2 (v), such that S∗

is an umes but (S∗,T ∗)—

where T ∗
is the “pair” of S∗

—is unfavorable. Without loss of generality, we may

assume that v1(T ∗) < v1(S∗). Now let S′
to be the union of all minimally exchangeable

sets S j ⊆ X E1
2 (v) such that v1(T j) < v1(S j), and notice that S′ (X E1

2 (v) and v1(T ′) <
v1(S′).

Let S∗ = X E1
2 (v) and T ∗ = X E2

1 (v). We begin with profile v = (v1, v2) where the

allocation is X1(v) = (E1 S∗)∪T ∗
and X2(v) = (E2 T ∗)∪ S∗

and we move to profile

v′ = (v1, v ′
2).

E1 S∗ S∗ T ∗ E2 T ∗

v ′
2 — 1 — — m — — 1 — — m—

By truthfulness, the allocation remains the same, i.e., X1(v′) = (E1 S∗)∪T ∗
and X2(v′) =

(E2 T ∗)∪S∗
.

However, now notice that (S∗ S′,T ∗ T ′) is a favorable exchange with respect to

v′. Moreover, for every minimally exchangeable set Si ⊆ S∗ S′
it holds that (Si ,Ti)

is favorable. By using lemma A.0.14 we have that the gain from the exchange in v′

for player 1 must be at least v1(T ∗ T ′)− v1(S∗ S′) > v1(T ∗)− v1(S∗) so we arrive at a

contradiction.

Proof of Lemma 3.1.18. Let v = (v1, v2) be a profile in Vm. By Lemmata 3.1.14 and

A.0.13, we know that X E1∪E2
1 (v) is the result of some exchanges of D taking place,

i.e., X E1∪E2
1 (v) = (E1

⋃
i∈I Si)∪⋃

i∈I Ti , where I ⊆ [k]. There are two things that can go

wrong: either there exists some x ∈ I such that (Sx ,Tx) is unfavorable, or there exists

some z ∈ [k] I such that (Sz ,Tz) is favorable. We first examine the former case.

138 Appendix A. Missing Material from Section 3.1

Without loss of generality, we may assume that v1(Tx) < v1(Sx). Consider the

profile v′ = (v1, v i
2) where

v i
2 j =

m +2 j−m−1
if j ∈ X2(v)

1+2 j−m−1
otherwise

By truthfulness, X2(v′) = X2(v). Note also that v i
2 induces for player 2 a strict prefer-

ence over all subsets (see also Remark A.0.7). Moreover, with respect to v i
2 the set of

“good” minimal exchanges is exactly {(Si ,Ti) | i ∈ I }.

We now claim that player 1 can deviate and strictly improve his utility, thus

contradicting truthfulness. In particular, consider the profile v′′ = (v i
1, v i

2) where

v i
1 j =

m +2 j−m−1
if j ∈ (X1(v′)∪Sx) Tx

1+2 j−m−1
otherwise

Again, v i
1 induces for player 1 a strict preference over all subsets, and thus v′′ ∈ V 6=

m .

As a result, argmaxS∈Oi
v i

i (S) only contains X Ni

i (v), for i ∈ {1,2}, and by Lemma 3.1.12

we have X N1∪N2
1 (v′′) = X N1∪N2

1 (v′). Additionally, notice that with respect to v′′ the set

of favorable minimal exchanges is {(Si ,Ti) | i ∈ I {x}}. So, by Lemma 3.1.17 we have

X E1∪E2
1 (v′′) = (

E1
⋃

i∈I {x} Si
)∪⋃

i∈I {x} Ti = (X E1∪E2
1 (v′)∪Sx) Tx .

So, by deviating from v′ to v′′, player 1 improves his utility by v1(Sx)− v1(Tx) > 0,

which contradicts truthfulness. We conclude that there is no x ∈ I such that (Sx ,Tx)

is unfavorable with respect to v.

Next, we move on to the second case, i.e., there exists some z ∈ [k] I such that

(Sz ,Tz) is favorable with respect to v. Like in the first case, the valuation functions that

we define induce strict preferences over all subsets. Consider the profile Q = (v ii
1, v2)

where

v ii
1 j =

m2 +2 j−m−1

if j ∈ X1(v) Sz

m +2 j−m−1
if j ∈ Tz

1+2 j−m−1
otherwise

We know, by Lemmata 3.1.14 and A.0.13, that X E1∪E2
1 (Q) = (

E1
⋃

i∈J Si
)∪⋃

i∈J Ti for

some J ⊆ [k]. By truthfulness, X N1∪N2
1 (Q) ⊇ X N1∪N2

1 (v). In fact, by Lemma 3.1.12,

it must be the case where X N1∪N2
1 (Q) = X N1∪N2

1 (v). Again by truthfulness, X E1
1 (Q) ⊇

X E1
1 (v) Sz = E1

⋃
i∈I∪{z} Si and X E2

1 (Q) ⊇ X E2
1 (v) = ⋃

i∈I∪{z} Ti . This implies that I ⊆ J ⊆
I ∪ {z}. If J = I ∪ {z}, then player 1, by deviating from v to Q, improves his utility by

v1(Tz)−v1(Sz) > 0, which contradicts truthfulness. So, it must be the case where J = I .

Now, consider the profile Q ′ = (v ii
1, v ii

2) ∈ V 6=
m where

v ii
2 j =

m +2 j−m−1
if j ∈ X N1∪N2

2 (Q)∪⋃
i∈I∪{z} Si ∪⋃

i∉I∪{z} Ti

1+2 j−m−1
otherwise

Appendix A. Missing Material from Section 3.1 139

Since, for i ∈ {1,2}, argmaxS∈Oi
v ii

i (S) only contains X Ni

i (v), by Lemma 3.1.12 we have

X N1∪N2
2 (Q ′) = X N1∪N2

2 (Q). Further, the set of favorable minimal exchanges with respect

to Q ′
is {(Si ,Ti) | i ∈ I∪{z}}. So, by Lemma 3.1.17 we have X E1∪E2

2 (Q ′) = (
E2

⋃
i∈I∪{z} Ti

)∪⋃
i∈I∪{z} Si .

So, by deviating from Q to Q ′
, player 2 improves his utility by v2(Sz)− v2(Tz) > 0,

which contradicts truthfulness. Therefore, there is no z ∈ [k] I such that (Sz ,Tz) is

favorable with respect to v, and this concludes the proof.

141

Appendix B

Missing Material from Chapter 6

B.1 Instances with Costs Exceeding the Budget

Consider an instance with a symmetric submodular function, where there exist agents

with ci > B . The presence of such agents can create infeasible solutions of very high

value and make an analog of Lemma 6.1.1 impossible to prove. It may seem at first

sight that we could just discard such agents, since too expensive agents are not

included in any feasible solution anyway. Simply discarding them, however, could

destroy the symmetry of the function (e.g., if we had a cut function defined on a graph,

we could not just remove a node).

Let I denote the set of all instances of the problem with symmetric submodular

functions, and let J denote the set of all such instances where at most one agent has

cost more than B . Given X ⊆ A, we let c(X) =∑
i∈X ci . The next lemma, together with

its corollary, show that, when dealing with symmetric submodular functions, we may

only consider instances in J without any loss of generality.

Lemma B.1.1. Given an instance I = (A, v,c,B) ∈ I , we can efficiently construct an

instance J = (A′, v ′,c′,B) ∈J such that

• Every feasible solution of I is a feasible solution of J and vice versa.

• If X is a feasible solution of I , then v(X) = v ′(X) and c(X) = c′(X). In particular,

opt(J) = opt(I).

Proof. Let E = {i ∈ A | ci > B} be the set of expensive agents and define A′ = (A E)∪{iE },

where iE is a new agent replacing the whole set E . For i ∈ A E we define c ′i = ci , while

c ′iE
= B +1. Finally, v ′

is defined as follows

v ′(T) =
{

v(T) , if T ⊆ A E

v((T {iE })∪E) , otherwise

Now suppose X is a budget-feasible solution of I . Then c(X) ≤ B and thus X ⊆ A E .

But then, by the definition of c′, c′(X) = c(X) ≤ B as well, and therefore X is also a

budget-feasible solution of J . Moreover, v ′(X) = v(X) by the definition of v ′
. We

conclude that opt(I) ≤ opt(J).

The proof that every feasible solution of J is a feasible solution of I is almost

identical. This implies opt(J) ≤ opt(I), and therefore opt(J) = opt(I).

142 Appendix B. Missing Material from Chapter 6

Now, it is not hard to see that we can turn any algorithmic result on J to the

same algorithmic result on I . However, we need a somewhat stronger statement to

take care of issues like truthfulness and budget-feasibility. This is summarized in

the following corollary.

Corollary B.1.2. Given a (polynomial time) algorithm alg′
that achieves a ρ-approxima-

tion on instances in J , we can efficiently construct a (polynomial time) ρ-approximation

algorithm alg that works for all instances in I . Moreover, if alg′
is monotone and

budget-feasible on instances in J , assuming Myerson’s threshold payments, then alg

is monotone and budget-feasible on instances in I .

Proof. The description of alg is quite straightforward. Given an instance I = (A, v,c,B) ∈
I , alg first constructs instance J = (A′, v ′,c′,B) ∈ J , as described in the proof of

Lemma B.1.1. Then alg runs alg′
with input J and returns its output. Clearly, if alg′

runs in polynomial time, so does alg.

If X = alg′(J) = alg(I), then X is feasible with respect to J and opt(J) ≤ ρ ·v ′(X). By

Lemma B.1.1 we get that X is feasible with respect to I and opt(I) = opt(J) ≤ ρ ·v ′(X) =
ρ · v(X). This establishes the approximation ratio of alg.

Next, assume that alg′
is monotone and budget-feasible on instances in J , when

using Myerson’s threshold payments. Suppose that agent j ∈ alg(I) reduces his cost

from c j to b j < c j . This results in a new instance I∗ = (A, v, (b j ,c− j),B) ∈ I . Since

it must be the case where c j ≤ B , the corresponding instance of J is J∗ = (A′, v ′,
(b j ,c′− j),B). Due to the monotonicity of alg′

we have

j ∈ alg(I) = alg′(J) ⇒ j ∈ alg′(J∗) = alg(I∗) ,

and therefore alg is monotone as well.

The budget-feasibility of alg follows from the budget-feasibility of alg′
by observing

that i ∈ alg(A, v, (b j ,c− j),B) if and only if i ∈ alg′(A′, v ′, (b j ,c′− j),B) for all i ∈ A′
.

B.2 Regarding Remark 6.0.1

We use the cut function on a very simple graph and show that although v is submod-

ular, v̂ is not. Consider the following graph where each edge has unit weight:

a b

c d

We compute the value of the following sets:

v̂({a}) = v({a}) = 2

v̂({a,b}) = v({a}) = 2

B.2. Regarding Remark 6.0.1 143

v̂({a,c}) = v({a}) = v({c}) = v({a,c}) = 2

v̂({a,b,c}) = v({b,c}) = 3

Now it is easy to see that although {a} ⊆ {a,c} we have

v̂({a}∪ {b})− v̂({a}) = 0 < 1 = v̂({a,c}∪ {b})− v̂({a,c}) .

So an interesting question is if v̂ can be classified when v is submodular. In

Gupta, Nagarajan, and Singla, 2017 the general XOS class was introduced, where it

is allowed for a function to be non-monotone (recall here that the XOS class contains

only non-decreasing functions by definition). They proved that when v is general

XOS then v̂ is XOS, while in addition they observed that the class of non-negative

submodular functions is a strict subset of the general XOS class. Thus since any

non-negative submodular function v is also general XOS we conclude v̂ is XOS.

145

Bibliography

Ageev, A. A. and M. Sviridenko (1999). “Approximation Algorithms for Maximum Coverage

and Max Cut with Given Sizes of Parts”. In: Integer Programming and Combinatorial Opti-

mization, 7th International IPCO Conference, 1999, Proceedings, pp. 17–30.

— (2004). “Pipage Rounding: A New Method of Constructing Algorithms with Proven Perfor-

mance Guarantee”. In: Journal of Combinatorial Optimization 8.3, pp. 307–328.

Amanatidis, G., G. Birmpas, and E. Markakis (2016a). “Coverage, Matching, and Beyond:

New Results on Budgeted Mechanism Design”. In: Proceedings of the 12th International

Conference on Web and Internet Economics, WINE 2016, pp. 414–428.

— (2016b). “On Truthful Mechanisms for Maximin Share Allocations”. In: Proceedings of the

25th International Joint Conference on Artificial Intelligence, ĲCAI 2016, pp. 31–37.

— (2017). “On Budget-Feasible Mechanism Design for Symmetric Submodular Objectives”.

In: CoRR abs/1704.06901. url: http://arxiv.org/abs/1704.06901.

Amanatidis, G., E. Markakis, A. Nikzad, and A. Saberi (2015). “Approximation Algorithms

for Computing Maximin Share Allocations”. In: Automata, Languages, and Programming -

42nd International Colloquium, ICALP 2015, Proceedings, Part I, pp. 39–51.

Amanatidis, G., G. Birmpas, G. Christodoulou, and E. Markakis (2017). “Truthful Allocation

Mechanisms Without Payments: Characterization and Implications on Fairness”. In: ACM

Conference on Economics and Computation, EC ’17, pp. 545–562.

Anari, N., G. Goel, and A. Nikzad (2014). “Mechanism Design for Crowdsourcing: An Optimal

1-1/e Competitive Budget-Feasible Mechanism for Large Markets”. In: 55th IEEE Annual

Symposium on Foundations of Computer Science, FOCS 2014, pp. 266–275.

Archer, A. and É. Tardos (2007). “Frugal path mechanisms”. In: ACM Trans. Algorithms 3.1.

Asadpour, A. and A. Saberi (2007). “An approximation algorithm for max-min fair allocation

of indivisible goods”. In: ACM Symposium on Theory of Computing (STOC), pp. 114–121.

Aziz, H. and S. MacKenzie (2016). “A Discrete and Bounded Envy-free Cake Cutting Protocol

for Four Agents”. In: 48th ACM Symposium on the Theory of Computing, STOC 2016,

pp. 454–464.

Aziz, H., A. Filos-Ratsikas, J. Chen, S. Mackenzie, and N. Mattei (2016). “Egalitarianism of

Random Assignment Mechanisms: (Extended Abstract)”. In: International Conference on

Autonomous Agents & Multiagent Systems, AAMAS 2016, pp. 1267–1268.

Balkanski, E. and J. D. Hartline (2016). “Bayesian Budget Feasibility with Posted Pricing”. In:

Proceedings of the 25th International Conference on World Wide Web, WWW 2016. ACM,

pp. 189–203.

Bansal, N. and M. Sviridenko (2006). “The Santa Claus Problem”. In: ACM Symposium on

Theory of Computing (STOC), pp. 31–40.

Barman, S. and S. K. K. Murthy (2017). “Approximation Algorithms for Maximin Fair Divi-

sion”. In: ACM Conference on Economics and Computation, EC ’17, pp. 647–664.

http://arxiv.org/abs/1704.06901

146 BIBLIOGRAPHY

Bei, X., N. Chen, N. Gravin, and P. Lu (2012). “Budget feasible mechanism design: from

prior-free to bayesian”. In: Proceedings of the 44th Symposium on Theory of Computing

Conference, STOC 2012, pp. 449–458.

Bezakova, I. and V. Dani (2005). “Allocating Indivisible Goods”. In: ACM SIGecom Exchanges

5, pp. 11–18.

Borgs, C., J. T. Chayes, N. Immorlica, M. Mahdian, and A. Saberi (2005). “Multi-unit auc-

tions with budget-constrained bidders”. In: Proceedings 6th ACM Conference on Electronic

Commerce EC 2005, pp. 44–51.

Borodin, A., Y. Filmus, and J. Oren (2010). “Threshold Models for Competitive Influence

in Social Networks”. In: Proceedings of the 6th International Workshop on Internet and

Network Economics, WINE 2010, pp. 539–550.

Bouveret, S., Y. Chevaleyre, and N. Maudet (2016). “Fair Allocation of Indivisible Goods”. In:

Handbook of Computational Social Choice. Ed. by F. Brandt, V. Conitzer, U. Endriss, J.

Lang, and A. D. Procaccia. Cambridge University Press. Chap. 12.

Bouveret, S. and J. Lang (2011). “A General Elicitation-free Protocol for Allocating Indivisible

Goods”. In: Proceedings of the 22nd International Joint Conference on Artificial Intelligence,

ĲCAI 2011, pp. 73–78.

— (2014). “Manipulating picking sequences”. In: ECAI 2014 - 21st European Conference on

Artificial Intelligence, pp. 141–146.

Bouveret, S. and M. Lemaître (2016). “Characterizing conflicts in fair division of indivisible

goods using a scale of criteria”. In: Autonomous Agents and Multi-Agent Systems 30.2. A

preliminary version of this work has appeared in AAMAS ’14, pp. 259–290.

Brams, S. J. and D. King (2005). “Efficient Fair Division - Help the worst off or avoid envy”.

In: Rationality and Society 17.4, pp. 387–421.

Brams, S. J. and A. D. Taylor (1996). Fair Division: from Cake Cutting to Dispute Resolution.

Cambridge University press.

Budish, E. (2011). “The Combinatorial Assignment Problem: Approximate Competitive Equi-

librium from Equal Incomes”. In: Journal of Political Economy 119.6, pp. 1061–1103.

Caragiannis, I., C. Kaklamanis, P. Kanellopoulos, and M. Kyropoulou (2009). “On Low-Envy

Truthful Allocations”. In: First International Conference on Algorithmic Decision Theory,

ADT 2009, pp. 111–119.

Caragiannis, I., D. Kurokawa, H. Moulin, A. D. Procaccia, N. Shah, and J. Wang (2016). “The

Unreasonable Fairness of Maximum Nash Welfare”. In: ACM Conference on Economics and

Computation, EC ’16, pp. 305–322.

Caselton, W. F. and J. V. Zidek (1984). “Optimal monitoring network designs”. In: Statistics

& Probability Letters 2.4, pp. 223–227.

Chan, Y. H. and L. C. Lau (2012). “On linear and semidefinite programming relaxations for

hypergraph matching”. In: Mathematical Programming 135.1-2, pp. 123–148.

Chekuri, C., J. Vondrák, and R. Zenklusen (2014). “Submodular Function Maximization via

the Multilinear Relaxation and Contention Resolution Schemes”. In: SIAM J. Comput.

43.6, pp. 1831–1879.

Chen, N., N. Gravin, and P. Lu (2011). “On the Approximability of Budget Feasible Mecha-

nisms”. In: Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete

Algorithms, SODA 2011, pp. 685–699.

BIBLIOGRAPHY 147

Chen, N., E. Elkind, N. Gravin, and F. Petrov (2010). “Frugal Mechanism Design via Spectral

Techniques”. In: 51th Annual IEEE Symposium on Foundations of Computer Science, FOCS

2010, pp. 755–764.

Chen, Y., J. K. Lai, D. C. Parkes, and A. D. Procaccia (2013). “Truth, justice, and cake cutting”.

In: Games and Economic Behavior 77.1, pp. 284–297.

Christodoulou, G., E. Koutsoupias, and A. Vidali (2008). “A characterization of 2-Player Mech-

anisms for Scheduling”. In: Algorithms - ESA, 16th Annual European Symposium, pp. 297–

307.

Christodoulou, G. and A. Kovács (2011). “A Global Characterization of Envy-Free Truthful

Scheduling of Two Tasks”. In: Internet and Network Economics - 7th International Work-

shop, WINE 2011, Proceedings, pp. 84–96.

Cole, R., V. Gkatzelis, and G. Goel (2013). “Mechanism design for fair division: allocating

divisible items without payments”. In: ACM Conference on Electronic Commerce, EC ’13.

ACM, pp. 251–268.

Cook, W. J., W. H. Cunningham, W. R. Pulleyblank, and A. Schrĳver (1998). Combinatorial

Optimization. John Wiley & Sons, Inc.

Cressie, N. (1993). “Statistics for Spatial Data”. In:

Dobzinski, S., R. Lavi, and N. Nisan (2012). “Multi-unit auctions with budget limits”. In:

Games and Economic Behavior 74.2, pp. 486–503.

Dobzinski, S., C. H. Papadimitriou, and Y. Singer (2011). “Mechanisms for complement-free

procurement”. In: Proceedings 12th ACM Conference on Electronic Commerce EC 2011,

pp. 273–282.

Dobzinski, S. and M. Sundararajan (2008). “On Characterizations of Truthful Mechanisms

for Combinatorial Auctions and Scheduling”. In: ACM Conference on Electronic Commerce

EC 2008).

Edmonds, J. (1965). “Maximum Matching and a Polyhedron with 0,1 Vertices”. In: Journal of

Research of the National Bureau of Standards 69 B, pp. 125–130.

Edmonds, J. and K. Pruhs (2006). “Balanced Allocations of Cake”. In: Symposium on Foun-

dations of Computer Science (FOCS), pp. 623–634.

Ehlers, L. and B. Klaus (2003). “Coalitional strategy-proof and resource-monotonic solutions

for multiple assignment problems”. In: Social Choice and Welfare 21.2, pp. 265–280.

Even, S. and A. Paz (1984). “A note on cake cutting”. In: Discrete Applied Mathematics 7,

pp. 285–296.

Feige, U., V. S. Mirrokni, and J. Vondrák (2011). “Maximizing Non-monotone Submodular

Functions”. In: SIAM J. Comput. 40.4, pp. 1133–1153.

Feldman, M., J. Naor, and R. Schwartz (2011). “A Unified Continuous Greedy Algorithm for

Submodular Maximization”. In: IEEE 52nd Annual Symposium on Foundations of Computer

Science, FOCS 2011. IEEE Computer Society, pp. 570–579.

Foley, D. (1967). “Resource Allocation and the Public Sector”. In: Yale Economics Essays 7,

pp. 45–98.

Fujishige, S. (1983). “Canonical Decompositions of Symmetric Submodular Systems”. In:

Discrete Applied Mathematics 5, pp. 175–190.

Gamow, G. and M. Stern (1958). Puzzle-Math. Viking press.

148 BIBLIOGRAPHY

Gentle, J.E. (2009). Computational statistics. Vol. 308. Springer.

Goel, G., V. S. Mirrokni, and R. P. Leme (2012). “Polyhedral clinching auctions and the ad-

words polytope”. In: Proceedings of the 44th Symposium on Theory of Computing Confer-

ence, STOC 2012, pp. 107–122.

Goel, G., A. Nikzad, and A. Singla (2014). “Mechanism Design for Crowdsourcing Markets

with Heterogeneous Tasks”. In: Proceedings of the Seconf AAAI Conference on Human

Computation and Crowdsourcing, HCOMP 2014.

Goemans, M. X. and D. P. Williamson (1994). “New 3/4-Approximation Algorithms for the

Maximum Satisfiability Problem”. In: SIAM Journal of Discrete Mathematics 7.4, pp. 656–

666.

Gourvès, L., J. Monnot, and L. Tlilane (2015). “Worst case compromises in matroids with

applications to the allocation of indivisible goods”. In: Theoretical Computer Science 589,

pp. 121–140.

Guo, M. and V. Conitzer (2010). “Strategy-proof allocation of multiple items between two

agents without payments or priors”. In: 9th International Conference on Autonomous

Agents & Multiagent Systems AAMAS 2010, pp. 881–888.

Gupta, A., V. Nagarajan, and S. Singla (2017). “Adaptivity Gaps for Stochastic Probing: Sub-

modular and XOS Functions”. In: Proceedings of the Twenty-Eighth Annual ACM-SIAM

Symposium on Discrete Algorithms, SODA 2017. SIAM, pp. 1688–1702.

Gupta, A., A. Roth, G. Schoenebeck, and K. Talwar (2010). “Constrained Non-monotone Sub-

modular Maximization: Offline and Secretary Algorithms”. In: Internet and Network Eco-

nomics - 6th International Workshop, WINE 2010, Proceedings. Springer, pp. 246–257.

Hall, P. (1935). “On Representatives of Subsets”. In: Journal of the London Mathematical

Society s1-10.1, pp. 26–30.

Hill, T. (1987). “Partitioning general probability measures”. In: The Annals of Probability 15.2,

pp. 804–813.

Hoeffding, W. (1963). “Probability Inequalities for Sums of Bounded Random Variables”. In:

Journal of the American Statistical Association 58.301, pp. 13–30.

Horel, T., S. Ioannidis, and S. Muthukrishnan (2014). “Budget Feasible Mechanisms for Ex-

perimental Design”. In: LATIN 2014: Theoretical Informatics - 11th Latin American Sympo-

sium, Proceedings, pp. 719–730.

Jalaly, P. and É. Tardos (2017). Simple and Efficient Budget Feasible Mechanisms for Mono-

tone Submodular Valuations, arxiv:1703:10681.

Karlin, A. R., D. Kempe, and T. Tamir (2005). “Beyond VCG: Frugality of Truthful Mech-

anisms”. In: 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS

2005), Proceedings, pp. 615–626.

Kempe, D., M. Salek, and C. Moore (2010). “Frugal and Truthful Auctions for Vertex Covers,

Flows and Cuts”. In: 51th Annual IEEE Symposium on Foundations of Computer Science,

FOCS 2010, pp. 745–754.

Klaus, B. and E. Miyagawa (2002). “Strategy-proofness, Solidarity and Consistency for Multi-

ple Assignment Problems”. In: International Journal of Game Theory 30.3, pp. 421–435.

Kleinberg, J. and É. Tardos (2006). Algorithm Design. Addison Wesley.

BIBLIOGRAPHY 149

Krause, A., A. P. Singh, and C. Guestrin (2008). “Near-Optimal Sensor Placements in Gaus-

sian Processes: Theory, Efficient Algorithms and Empirical Studies”. In: Journal of Ma-

chine Learning Research 9, pp. 235–284.

Kulik, A., H. Shachnai, and T. Tamir (2013). “Approximations for Monotone and Nonmono-

tone Submodular Maximization with Knapsack Constraints”. In: Math. Oper. Res. 38.4,

pp. 729–739.

Kurokawa, D., A. D. Procaccia, and J. Wang (2016). “When Can the Maximin Share Guarantee

Be Guaranteed?” In: 30th AAAI Conference on Artificial Intelligence, AAAI 2016.

Lee, J., V. S. Mirrokni, V. Nagarajan, and M. Sviridenko (2010). “Maximizing Nonmonotone

Submodular Functions under Matroid or Knapsack Constraints”. In: SIAM J. Discrete

Math. 23.4, pp. 2053–2078.

Leonardi, S., G. Monaco, P. Sankowski, and Q. Zhang (2016). “Budget Feasible Mechanisms

on Matroids”. In: CoRR abs/1612.03150. url: http://arxiv.org/abs/1612.03150.

Lipton, R. J., E. Markakis, E. Mossel, and A. Saberi (2004). “On approximately fair allocations

of indivisible goods”. In: ACM Conference on Electronic Commerce EC 2004, pp. 125–131.

Markakis, E. and C.-A. Psomas (2011). “On Worst-Case Allocations in the Presence of Indivis-

ible Goods”. In: 7th Workshop on Internet and Network Economics (WINE 2011), pp. 278–

289.

Mennle, T. and S. Seuken (2014). “An axiomatic approach to characterizing and relaxing

strategyproofness of one-sided matching mechanisms”. In: ACM Conference on Economics

and Computation, EC ’14, pp. 37–38.

Moulin, H. (1990). “Uniform Externalities: Two Axioms for Fair Allocation”. In: Journal of

Public Economics 43.3, pp. 305–326.

— (2003). Fair division and collective welfare. MIT Press. isbn: 978-0-262-63311-6.

Myerson, R. (1981). “Optimal Auction Design”. In: Mathematics of Operations Research 6.1.

Nemhauser, G. L., L. A. Wolsey, and M. L. Fisher (1978). “An analysis of approximations for

maximizing submodular set functions - I”. In: Math. Program. 14.1, pp. 265–294.

Papadimitriou, C. H. (2001). “Algorithms, Games, and the Internet”. In: Automata, Languages

and Programming, 28th International Colloquium, ICALP 2001, Proceedings. Vol. 2076.

Lecture Notes in Computer Science. Springer, pp. 1–3.

Pápai, S. (2000). “Strategyproof Multiple Assignment Using Quotas”. In: Review of Economic

Design 5.1, pp. 91–105.

— (2001). “Strategyproof and Nonbossy Multiple Assignments”. In: Journal of Public Economic

Theory 3.3, pp. 257–271.

— (2003). “Strategyproof exchange of indivisible goods”. In: Journal of Mathematical Eco-

nomics 39.8, pp. 931–959.

— (2007). “Exchange in a General Market with Indivisible Goods”. In: Journal of Economic

Theory 132, pp. 208–235.

Procaccia, A. D. (2016). “Cake Cutting Algorithms”. In: Handbook of Computational Social

Choice. Ed. by F. Brandt, V. Conitzer, U. Endriss, J. Lang, and A.D. Procaccia. Cambridge

University Press. Chap. 13.

Procaccia, A. D. and J. Wang (2014). “Fair enough: guaranteeing approximate maximin

shares”. In: ACM Conference on Economics and Computation, EC ’14, pp. 675–692.

http://arxiv.org/abs/1612.03150

150 BIBLIOGRAPHY

Queyranne, M. (1998). “Minimizing symmetric submodular functions”. In: Mathematical Pro-

gramming 82.1-2, pp. 3–12.

Robertson, J. M. and W. A. Webb (1998). Cake Cutting Algorithms: be fair if you can. AK Peters.

Schäffer, A. A. and M. Yannakakis (1991). “Simple Local Search Problems That are Hard to

Solve”. In: SIAM J. Comput. 20.1, pp. 56–87.

Singer, Y. (2010). “Budget Feasible Mechanisms”. In: 51th Annual IEEE Symposium on Foun-

dations of Computer Science, FOCS 2010, pp. 765–774.

— (2012). “How to win friends and influence people, truthfully: influence maximization

mechanisms for social networks”. In: Proceedings of the Fifth International Conference

on Web Search and Web Data Mining, WSDM 2012, pp. 733–742.

— (2016). Personal communication.

Singla, A. and A. Krause (2013). “Incentives for Privacy Tradeoff in Community Sensing”.

In: Proceedings of the First AAAI Conference on Human Computation and Crowdsourcing,

HCOMP 2013. AAAI.

Spliddit (2015). Provably Fair Solutions. http://www.spliddit.org/.

Steinhaus, H. (1948). “The Problem of Fair Division”. In: Econometrica 16, pp. 101–104.

Svensson, L. (1999). “Strategy-proof Allocation of Indivisible Goods”. In: Social Choice and

Welfare 16, pp. 557–567.

Sviridenko, Maxim (2004). “A note on maximizing a submodular set function subject to a

knapsack constraint”. In: Oper. Res. Lett. 32.1, pp. 41–43.

Varian, H. (1974). “Equity, Envy and Efficiency”. In: Journal of Economic Theory 9, pp. 63–91.

Woeginger, G. (1997). “A polynomial time approximation scheme for maximizing the minimum

machine completion time”. In: Operations Research Letters 20, pp. 149–154.

Woeginger, G. and J. Sgall (2007). “On the Complexity of cake cutting”. In: Discrete Optimiza-

tion 4.2, pp. 213–220.

Wolsey, L. A. (1982). “Maximising Real-Valued Submodular Functions: Primal and Dual

Heuristics for Location Problems”. In: Math. Oper. Res. 7.3, pp. 410–425.

http://www.spliddit.org/

	Abstract
	Περίληψη
	Acknowledgements
	Preface
	I Fair Allocation of Indivisible Goods
	Introduction
	Computing Maximin Share Allocations
	Truthful Allocation Mechanisms Without Payments

	II Procurement Auctions with Budget Constraints
	Introduction
	Mechanisms for Non-Decreasing Submodular Objectives
	Going Beyond Monotonicity: Symmetric Submodular Objectives
	Going Beyond Submodular Objectives
	Missing Material from Section 3.1
	Missing Material from Chapter 6
	Bibliography

