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Abstract

The switch Markov chain has been extensively studied as the most natural Markov Chain Monte
Carlo approach for sampling graphs with prescribed degree sequences. We show that the switch chain
for sampling simple undirected graphs with a given degree sequence is rapidly mixing when the degree
sequence is so-called strongly stable. Strong stability is satisfied by all degree sequences for which the
switch chain was known to be rapidly mixing based on Sinclair’s multicommodity flow method up until
a recent manuscript of Erdős et al. (2019). Our approach relies on an embedding argument, involving a
Markov chain defined by Jerrum and Sinclair (1990). This results in a much shorter proof that unifies
(almost) all the rapid mixing results for the switch chain in the literature, and extends them up to sharp
characterizations of P-stable degree sequences. In particular, our work resolves an open problem posed
by Greenhill and Sfragara (2017).
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∗A preliminary version of this work appeared, as part of a larger work, in the Proceedings of the 30th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA 2019) [1].
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1 Introduction

A classical result due to Erdős and Gallai [18] characterizes when a sequence of non-negative integers
31 ≥ · · · ≥ 3= can be realized as the degree sequence of a simple undirected (labelled) graph on = vertices,
i.e., if there exists a realization of the sequence. The Erdős-Gallai theorem states that the sequence can be
realized if and only if: the sum 31 + · · · + 3= is even and, for every 1 ≤ : ≤ =,

:∑
8=1

38 ≤ : (: − 1) +
=∑

8=:+1
min{38 , :} .

Havel [27] and, independently, Hakimi [26], provide a simple polynomial-time algorithm to compute a
realization if one exists. With the existence and construction problem being well-understood, in the last
decades there has also been a great interest in uniformly sampling graphs with a given degree sequence, as it
finds many applications, e.g., in hypothesis testing in network structures [38].

A prominent line of work for sampling graphs with given degrees is the Markov Chain Monte Carlo
(MCMC) method. Here one studies a random walk on the set of all realizations induced by a probabilistic
algorithmic procedure that specifies how to make (small) random changes to the current realization. The
probabilities with which realizations are turned into each other (arising from the algorithmic procedure)
define a Markov chain on the set of all realizations. The idea, roughly, is that after a sufficient number of
changes, the so-called mixing time of the Markov chain, the resulting realization corresponds to a sample
from an almost uniform distribution over all realizations of the given degree sequence. The goal is to show
that the chain mixes rapidly, meaning that one only needs to simulate the Markov chain for a polynomial (in
the number of vertices =) number of steps in order to obtain an approximately uniform sample.

One of the most well-known probabilistic procedures for making these small changes uses local operations
called switches (also known as swaps or transpositions); see Figure 1 for an example. The notion of a switch
naturally gives rise to the switch algorithm: start with some initial realization �0 with degree sequence
d, that can be computed in polynomial time using the Havel-Hakimi algorithm mentioned earlier, and
repeatedly apply random switches. This can be done by selecting a tuple of four nodes (G, H, E, F) uniformly
at random, for instance. If, as in Figure 1, the edges {G, H} and {E, F} are present in �0, and {G, F} and
{E, H} are not, we switch the edges {G, H} and {E, F}. Does this algorithm have all the desired properties?
That is, do we have the guarantee that if one applies sufficiently many switches that the resulting graph is
close to a uniform sample from the set of all realizations?

In order to establish the correctness of this approach we consider the switch Markov chain on the set of
all realizations induced by this algorithmic procedure. The transition probabilities of the Markov chain are
given by the probabilities with which the switches are applied. We should first check that this is an aperiodic,
irreducible Markov chain with the uniform distribution as stationary distribution, i.e., that it actually does the
job. Aperiodicity is easy to check, as well as the fact that the chain is reversible with respect to the uniform
distribution. Irreducibility is less trivial, but still well-understood. The fact that every two realizations of a
degree sequence d can be transformed into one another by a finite sequence of switches—which implies that
the switch chain is irreducible—already follows from the works of Havel [27] and Hakimi [26], see also
Petersen [39]; for a direct proof (in English), see Taylor [43].

It then follows that the switch algorithm is a fully polynomial almost uniform sampler if the switch
Markov chain is rapidly mixing. The switch Markov chain has been shown to be rapidly mixing for various
degree sequences [6, 24, 25, 37, 16, 14], but it is still open whether it is rapidly mixing for all degree
sequences.
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Figure 1: A switch in which edges {E, F}, {G, H} are replaced by {E, H}, {G, F}. Note that the degree
sequence is preserved when applying a switch operation.

1.1 Our contributions

In Section 3, we present a new proof idea for showing rapid mixing of the switch Markov chain that unifies
and extends all ranges of degrees for which the switch chain was known to be rapidly mixing before the
conference version of this work [1]. More recent follow-up work is given at the end of the related work
subsection. In particular, we show that the switch chain is rapidly mixing for all strongly stable degree
sequences (Theorem 3.1). We introduce strong stability as a stricter version of the notion of %-stability [30],
which roughly means that the number of realizations that a degree sequence has, does not vary too much if
the degree sequence is slightly perturbed. The strong stability condition is satisfied by the degree sequences
in the works [32, 6, 24, 37, 16, 14] and by characterizations of %-stability [28]. In particular, our results
resolve an open question posed by Greenhill [24] (see Corollary 3.2). We should note that the unification
of the existing results mentioned so far is qualitative rather than quantitative, in the sense that our simpler,
indirect approach provides weaker polynomial bounds for the mixing time. For examples of explicit mixing
time bounds we refer the reader to [6, 7, 25].

The proofs of the results in [37, 24, 16, 15] for the analysis of the switch Markov chain are all using
conceptually similar ideas to the ones introduced by Cooper, Dyer and Greenhill [6] for the analysis of the
switch chain for regular undirected graphs, and are based on the multi-commodity flow method of Sinclair
[40]. Sinclair’s method, roughly speaking, states that if one can define a good multi-commodity flow (of
which the demands depend on the stationary distribution) in the state space graph of the Markov chain in
which no edge gets too congested, then the Markov chain mixes rapidly. The individual parts of this method
for the known switch chain analyses can become quite technical and require long proofs.

In this work we take a different approach for proving that the switch chain is rapidly mixing. First we
analyze an easier auxiliary Markov chain introduced by Jerrum and Sinclair [30]; such a chain can be used
to sample realizations that almost have a given fixed degree sequence. We show that there exists an efficient
multi-commodity flow for the auxiliary chain when the given instance is strongly stable, and then show
how it can be transformed into an efficient multi-commodity flow for the switch chain. In this last step we
compare two Markov chains with different state spaces, as the auxiliary chain samples from a strictly larger
set of graphs than the switch chain. For this part of the proof we rely on embedding arguments similar to
those by Feder, Guetz, Mihail and Saberi [17].

1.2 Related work

Jerrum and Sinclair [30] provide a fully polynomial almost uniform sampler (FPAUS) for generating
realizations of degree sequences coming from any %-stable family of sequences (see Section 2.1). Jerrum,
Sinclair and Vigoda [31] give the first FPAUS for sampling bipartite graphs with any given degree sequence.
This is a corollary of their breakthrough work [31] on approximating the permanent of a non-negative
matrix. In the latter work the problem is reduced to that of sampling perfect matchings in a bipartite graph.
Bezáková, Bhatnagar and Vigoda [3] provide a more direct and improved sampler of that in [31]. It is
open whether or not there exists an FPAUS for general undirected degree sequences. More generally, it is
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still open if there is an FPAUS for sampling perfect matchings in undirected graphs. Recently S̆tefankovic̆,
Wilmes and Vigoda [41] showed that the approach in [31] does not go through for general undirected graphs.

One drawback of the sampler of Jerrum and Sinclair [30] is that it works with auxiliary states. Kannan,
Tetali and Vempala [32] introduce the switch chain as a simpler and more direct sampler that does not have
to work with auxiliary states. They addressed the mixing time of such a switch-based Markov chain for the
regular bipartite case. Cooper, Dyer and Greenhill [6] then gave a rapid mixing proof for regular undirected
graphs, and later Greenhill [24] extended this result to certain ranges of irregular degree sequences; see
also Greenhill and Sfragara [25]. Miklós, Erdős and Soukup [37] proved rapid mixing for the half-regular
bipartite case, and Erdős, Miklós and Toroczkai [16] for the almost half-regular case. Recently, Erdős,
Mezei and Miklós [14] presented a range of bipartite degree sequences unifying and generalizing the results
in [37, 16]. Carstens and Kleer [5] study a variant of the switch Markov chain for bipartite graphs, in which
multiple switches are performed simultaneously, and show it is rapidly mixing if and only if the switch
Markov chain is rapidly mixing.

Switch-based Markov chain Monte Carlo approaches have also been studied for other graph sampling
problems. Feder et al. [17], as well as Cooper et al. [8], study the mixing time of a Markov chain using
a switch-like probabilistic procedure (called a flip) for sampling connected graphs. For sampling perfect
matchings, switch-based Markov chains have also been studied, see, e.g., the recent work of Dyer, Jerrum
and Müller [10] and references therein.

Non-MCMC algorithms for sampling graphs with given degrees. There also exist graph sampling algorithms
not relying on the MCMC method, many inspired by the configuration model [4]. Although this model in
general outputs a loopy multigraph, there exist degree sequences for which the configuration model yields a
simple graph with positive probability. For 3-regular degree sequences, in which all nodes have degree
3 ∈ N, the configuration model outputs a simple graph with probability roughly 4−(3−1)2/4. This is actually
an exact uniform sample from the set of all simple 3-regular graphs (not just close to a uniform sample).
The inverse of the probability for obtaining a simple graph is bounded by a polynomial in = if and only if
3 = $

(√
log(=)

)
.

Steger and Wormald [42] analyze a natural variant of the configuration model in which repeatedly only
feasible edges are added uniformly at random. An edge is feasible if it does not create a loop or parallel
edge. They show this procedure gives an output distribution over all simple 3-regular graphs which is
asymptotically uniform, for 3 = >(=1/28). This range was extended to 3 = >(=1/3−n ) by Kim and Vu [33],
and later by Bayati, Kim and Saberi [2] to 3 = >(=1/2−n ). The latter work [2] also studies irregular degree
sequences.

McKay and Wormald [35] considered a different extension of the configuration model, in which first
a loopy multigraph is generated, after which loops and parallel edges are carefully switched out. This
procedure provides an exact uniform sample, in particular for regular graphs with 3 = >(=1/3), and runs
in expected polynomial time. Based on this algorithm, Gao and Wormald [22] provided an algorithm
that gives an exact uniform sample for 3 = >(

√
=), and later obtained similar results for power-law degree

sequences [21]. Very recently, Gao and Greenhill [19] obtained results along this line in which there is a set
of forbidden edges, that cannot be used in any realization.

There is also a line of work on importance sampling methods that generate graph samples with given
degrees that are statistically independent, see, e.g., [2, 9] and references therein. These samples do not
satisfy the properties that we require in this work, although in general they are sufficient to carry out certain
statistical tests.

Follow-up work since the conference version [1]. Erdős et al. [11] show, in a recent preprint, that the proof
templates used in [6, 24, 37, 16, 15] can be adjusted to show rapid mixing for %-stable degree sequences.
This is an improvement over our result for strongly stable degree sequences. In particular, it allows the
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authors to claim rapid mixing of the switch Markov chain for certain power-law degree sequences. These
sequences are claimed to be %-stable in [22], based on results in [20], but it is not known if they are also
strongly stable (or provably non strongly stable) in general.

1.3 Outline

In Section 2 we give all the necessary Markov chain preliminaries and we formally describe the switch chain
and the chain of Jerrum and Sinclair [30] that we use as an auxiliary Markov chain. In Section 3 we present
our rapid mixing results for strongly stable degree sequences, as well as our new proof approach for the
switch Markov chain.

2 Preliminaries

We begin with the necessary preliminaries regarding Markov chains and the multicommodity flow method
of Sinclair [40]. For Markov chain definitions not given here, see, e.g., [34].

LetM = (Ω, %) be an ergodic, time-reversible Markov chain over state space Ω with transition matrix
% and stationary distribution c. We write %C (G, ·) for the distribution over Ω at time step C given that the
initial state is G ∈ Ω. The total variation distance at time C with initial state G is

ΔG (C) = 3)+ (%C (G, ·), c) = max
(⊆Ω

��%C (G, () − c(()�� = 1
2

∑
H∈Ω

��%C (G, H) − c(H)�� ,
and the mixing time g(n) is defined as

g(n) = max
G∈Ω

{
min{C : ΔG (C ′) ≤ n for all C ′ ≥ C}

}
.

Informally, g(n) is the number of steps until the Markov chain is n-close to its stationary distribution
independently of the initial state G ∈ Ω. A Markov chain is said to be rapidly mixing if the mixing time can
be upper bounded by a function polynomial in ln( |Ω|/n).

It is well-known that, since the Markov chain is time-reversible, the matrix % only has real eigenvalues
1 = _0 > _1 ≥ _2 ≥ · · · ≥ _ |Ω |−1 > −1. We may replace the transition matrix % of the Markov chain by
(% + �)/2, to make the chain lazy, and hence guarantee that all its eigenvalues are non-negative. It then
follows that the second-largest eigenvalue of % is _1. In this work we always consider the lazy versions of
the Markov chains involved. It follows directly from Proposition 1 in [40] that

g(n) ≤ 1
1 − _1

(
ln(1/c∗) + ln(1/n)

)
,

where c∗ = minG∈Ω c(G). For the special case where c is the uniform distribution, the above bound becomes

g(n) ≤ 1
1 − _1

(ln( |Ω|) + ln(1/n)).

The quantity (1 − _1)−1 can be upper bounded using the multicommodity flow method of Sinclair [40].
We define the state space graph of the chainM as the directed graph M with node set Ω that contains

exactly the edges (G, H) ∈ Ω×Ω for which %(G, H) > 0 and G ≠ H. Let P = ∪G≠HPGH , where PGH is the set of
simple paths between G and H in the state space graph M. A flow 5 in Ω is a function P → [0,∞) satisfying∑
?∈PGH 5 (?) = c(G)c(H) for all G, H ∈ Ω, G ≠ H. The flow 5 can be extended to a function on oriented

edges of M by setting 5 (4) = ∑
?∈P:4∈? 5 (?), so that 5 (4) is the total flow routed through 4 ∈ � (M).

5



Let ℓ( 5 ) = max?∈P: 5 (?)>0 |? | be the length of a longest flow carrying path, and let d(4) = 5 (4)/&(4)
be the load of the edge 4, where &(4) = c(G)%(G, H) for 4 = (G, H). The maximum load of the flow is
d( 5 ) = max4∈� (M) d(4). Sinclair ([40], Corollary 6 ′) shows that

(1 − _1)−1 ≤ d( 5 )ℓ( 5 ).

We use the following standard technique for bounding the maximum load of a flow in case the chain
M has uniform stationary distribution c. Suppose \ is the smallest positive transition probability of the
Markov chain between two distinct states. If 1 is such that 5 (4) ≤ 1/|Ω| for all 4 ∈ � (M), then it follows
that d( 5 ) ≤ 1/\. Thus, we have

g(n) ≤ ℓ( 5 ) · 1
\

ln( |Ω|/n) .

Now, if ℓ( 5 ), 1 and 1/\ can be bounded by a function polynomial in log( |Ω|), it follows that the Markov
chainM is rapidly mixing. In this case, we say that 5 is an efficient flow. Note that in this approach the
transition probabilities do not play a role as long as 1/\ is polynomially bounded.

2.1 Graphic degree sequences and the switch chain

A sequence of non-negative integers d = (31, . . . , 3=) is called a graphic degree sequence if there exists a
simple, undirected, labeled graph on = nodes having degrees 31, . . . , 3=; such a graph is called a realization
of d. For a given degree sequence d, G(d) denotes the set of all realizations of d. Throughout this work we
only consider sequences d with positive components, and for which G(d) ≠ ∅. Let G′(d) = ∪d′G(d′) with
d′ ranging over the set {

d′ : 3 ′9 ≤ 3 9 for all 9 , and
=∑
8=1
|38 − 3 ′8 | ≤ 2

}
.

That is, we have (i) d′ = d, or (ii) there exist distinct ^, _ such that 3 ′
8
= 38 − 1 if 8 ∈ {^, _} and 3 ′

8
= 38

otherwise, or (iii) there exists a ^ so that 3 ′
8
= 38 −2 if 8 = ^ and 3 ′

8
= 38 otherwise. In the case (ii) we say that

d′ has two nodes with degree deficit one, and in the case (iii) we say that d′ has one node with degree deficit
two. An infinite family D of graphic degree sequences is called %-stable [30] if there exists a polynomial
@(=) such that for all d ∈ D we have |G′(d) |/|G(d) | ≤ @(=), where = is the number of components of d.

Jerrum and Sinclair [30] define the following Markov chain on G′(d), which will henceforth be referred
to as the JS chain.1

Let � ∈ G′(d) be the current state of the JS chain. Choose an ordered pair of vertices (8, 9) uniformly
at random:

• If � ∈ G(d) and (8, 9) is an edge of �, delete (8, 9) from � (Type 0 transition),
• If � ∉ G(d) and the degree of 8 in � is less than 38 , and (8, 9) is not an edge of �, add (8, 9) to
�; if this causes the degree of 9 to exceed 3 9 , select an edge ( 9 , :) uniformly at random and
delete it. (In case the degree of 9 did not exceed 3 9 , we call this a Type 2 transition, otherwise
we call it a Type 1 transition.)

In case the degree of 9 does not exceed 3 9 in the second case, we call this a Type 2 transition.

The graphs �,� ′ ∈ G′(d) are JS adjacent if they are adjacent in the state space graph MJS of the JS
chain, i.e., if � can be obtained from � ′ with positive probability in one transition of the JS chain. The
properties of the JS chain, stated in Theorem 2.1 below, are easy to check [30].

1 A slightly different definition of stability is given by Jerrum, McKay and Sinclair [28]. Based on this variant, one could
define the corresponding variant of the JS chain. Nevertheless, the definitions of stability in [28] and [30] (and their corresponding
definitions of strong stability) are equivalent. To avoid confusion, here we only use the definitions in [30].
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Theorem 2.1. The JS chain is irreducible, aperiodic and symmetric, and, hence, has uniform stationary
distribution over G′(d). Moreover, %(�,� ′)−1 ≤ 2=3 for all JS adjacent �,� ′ ∈ G′(d), and also the
maximum in- and out-degrees in MJS are bounded by =3.

We say that two graphs �,� ′ are within distance A in the JS chain if there exists a path of at most length
A from � to � ′ in MJS. By dist(�, d) we denote the minimum distance of � to any of the elements in G(d).
The following parameter will play a central role in this work. Let

:JS(d) = max
�∈G′ (d)

dist(�, d) . (1)

Based on the parameter :JS(d), we define the notion of strong stability. The simple observation in Proposition
2.3 justifies the terminology.

Definition 2.2 (Strong stability). An infinite family of graphic degree sequences D is called strongly stable
if there exists a constant ℓ such that :JS(d) ≤ ℓ for all d ∈ D.

Proposition 2.3. If D is strongly stable, then it is %-stable.

Proof. Suppose D is strongly stable with respect to the constant ℓ. Let d ∈ D be a degree sequence with =
components. For every � ∈ G′(d) G(d) choose some i(�) ∈ G(d) within distance : = :JS(d) of �. As
the in-degree of any node in MJS is bounded by =3, the number of paths with length at most : that end up at
any particular graph in G(d) is upper bounded by (=3): . Therefore, |G′(d) |/|G(d) | ≤ =3: ≤ =3ℓ , meaning
that D is %-stable, since ℓ is constant. �

Finally, the lazy version of the switch chain on G(d) is defined as follows; see, e.g., [6].

Let � ∈ G(d) be the current state of the switch chain:
• With probability 1/2, do nothing.
• Otherwise, attempt to perform a switch operation: select two node-disjoint edges {0, 1} and
{G, H} uniformly at random, and select a perfect matching " on nodes {G, H, 0, 1} uniformly at
random (there are three possible options). If " ∩ � (�) = ∅, then delete {0, 1}, {G, H} from
� (�) and add the edges of " .

The graphs �,� ′ ∈ G(d) are switch adjacentif they are adjacent in the state space graph Msw of the
switch chain, i.e., if � can be obtained from � ′ with positive probability in one transition of the chain. Note
that here this is equivalent to the condition |� (�)4� (� ′) | = 4. Below we summarize some properties of
the switch chain; see, e.g., [25] and references therein. The bound on the transition probabilities follows
from a simple counting argument.

Theorem 2.4. The switch chain is irreducible, aperiodic and symmetric, and, thus, has uniform stationary
distribution over G(d). Also, we have %(�,� ′)−1 ≤ 6=4 for all switch adjacent �,� ′ ∈ G(d), and the
maximum in- and out-degrees in Msw are bounded by =4.

3 Switch chain for strongly stable sequences

Theorem 3.1, below, is our main result regarding the mixing time of the switch chain for strongly stable degree
sequences. Its proof is divided in two parts. First, in Section 3.1, by giving an efficient multicommodity
flow, we show that for any d in a family of strongly stable degree sequences the JS chain is rapidly mixing
on G′(d). Then, in Section 3.2, we show that such an efficient flow for the JS chain on G′(d) can be
transformed into an efficient flow for the switch chain on G(d). This yields the following theorem.
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Theorem 3.1. Let D be a strongly stable family of degree sequences with respect to some constant : . Then
there exists a polynomial @(=) such that, for any 0 < n < 1, the mixing time gsw of the switch chain for a
graphic sequence d = (31, . . . , 3=) ∈ D satisfies

gsw(n) ≤ @(=): ln(1/n) .

We next discuss a direct corollary of Theorem 3.1 which was posed as an open question in [24]. Its proof
is essentially the same as that of a similar result for a slightly different, but equivalent, notion of stability in
[28]. It is given here for self-containment.

Corollary 3.2. Let D = D(X,Δ) be the set of all graphic degree sequences d satisfying

(Δ − X + 1)2 ≤ 4X(= − Δ − 1) (2)

where X and Δ are the minimum and maximum component of d, respectively. For any d ∈ D, we have
:JS(d) ≤ 6. Hence, the switch chain is rapidly mixing for sequences in D.

Proof. We first introduce some notation, using the same terminology as in [28]. Let � = (+, �) be an
undirected graph. For distinct D, E ∈ + we say that D, E are co-adjacent if {D, E} ∉ � , and {D, E} is called a
non-edge. An alternating path of length @ in� is a sequence of (not necessarily distinct) nodes E0, E1, . . . , E@
such that {E8 , E8+1} is an edge when 8 is even, and a non-edge if 8 is odd. The path is called a cycle if E0 = E@ .
As in the proof of Theorem 2 in [28], we need the following lemma of Jerrum, McKay, and Sinclair [28].

Lemma 3.3 ([28]). Let � be an undirected =-vertex graph with distinguished vertices B and C (not
necessarily distinct), and suppose the set of vertices adjacent to B is equal to the set of vertices adjacent
to C. Suppose that Xmin and Xmax are natural numbers such that the degrees of all vertices other than
B and C lie in the range [Xmin, Xmax], and such that B and C themselves have degree at least Xmin + 1. If
(Xmax − Xmin + 1)2 ≤ 4Xmin(= − Xmax − 1), then there exists an edge-disjoint alternating path in � which
starts at B, ends at C, and has length 1, 3, 5 or 7.

Let � ∈ G′(d) G(d). First consider the case where for the degree sequence d′ of � there exist G, H so
that

3 ′8 =

{
38 − 1 if 8 = G, H,
38 otherwise.

If {G, H} is a non-edge, then clearly dist(�, d) = 1, as we can then simply add the edge {G, H} to obtain
a graph in G(d). Therefore, assume that {G, H} is an edge in �. It follows that both nodes G and H have
degree at most = − 2 in � − {G, H}, and therefore there exist two nodes 0 and 1 so that {G, 0} and {H, 1}
are non-edges. If nodes 0 and 1 have the same set of neighbors in � + {G, 0} + {H, 1}, we can directly
apply Lemma 3.3 to the graph � + {G, 0} + {H, 1} to obtain an odd alternating path from 0 to 1 of length
at most 7. Otherwise, without loss of generality, we may assume that there exists a node 2 which is a
neighbor of 0 but not of 1 (again in � + {G, 0} + {H, 1}). We can then remove {0, 2} and add {2, 1} in order
to get a degree surplus of two at node 1, and then we can apply Lemma 3.3 with B = C = 1 in the graph
� + {G, 0} + {H, 1} − {0, 2} + {2, 1} (if 2 = G this part of the proof can be skipped by choosing 0 = 1 in the
beginning of the argument, as both {G, 1} and {H, 1} are then non-edges in the graph � we start with). In
any case, it follows that there exists an alternating (between edges and non-edges of �) circuit of even length
containing the edge {G, H} in � of length at most 12. This implies that dist(�, d) ≤ 6. That is, in at most
six moves in the JS chain we can now reach an element in G(d).

Next, suppose that for the degree sequence d′ of � there exists some G so that

3 ′8 =

{
38 − 2 if 8 = G,
38 otherwise.
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It is clear that the degree of G is at most = − 2 in �. Let {G, 0} and {G, 1} be two non-edges. Applying
similar steps as in the previous case to the graph � + {G, 0} + {G, 1} it follows that � has an alternating path
of length at most 9 starting in 0 and ending in 1. It then again follows that dist(�, d) ≤ 6. �

Explicit families satisfying these conditions are given in [28]. For instance, all sequences d with (i)
X(d) ≥ 1 and Δ(d) ≤ 2

√
= − 2, or (ii) X(d) ≥ 1

4= and Δ(d) ≤
3
4= − 1 satisfy (2). The bound in Corollary

3.2 is in a sense best possible with respect to the graph parameters involved. Namely, there exist non-stable
degree sequence families the members of which only slightly violate (2); see the discussion in [28] for
details.

3.1 Flow for the Jerrum-Sinclair chain

Jerrum and Sinclair [30] claim that, by using similar arguments as given in [29], the JS chain can be shown
to be rapidly mixing for (some) families of stable degree sequences. For completeness, we prove in Theorem
3.4 that the chain is indeed rapidly mixing for any family of strongly stable degree sequences. We do so
using the ideas introduced in [29] for sampling perfect matchings in dense graphs.

Theorem 3.4 ([30]). Let D be a strongly stable family of degree sequences. Then there exist polynomials
?(=) and A (=) such that for any d ∈ D there exists an efficient multicommodity flow 5 for the JS chain on
G′(d) satisfying max4 5 (4) ≤ ?(=)/|G′(d) | and ℓ( 5 ) ≤ A (=).

Our proof of Theorem 3.4, given below, uses conceptually similar arguments to the ones used in [6] for
the analysis of the switch chain on regular undirected graphs. However, the analysis done here for the JS
chain is, in our opinion, easier and cleaner than the corresponding analysis for the switch chain. In particular,
the so-called circuit processing procedure is much simpler in our setting, as it only involves altering edges
in the symmetric difference of two realizations in a straightforward fashion. In the switch chain analyses
[6, 25, 37, 13, 16, 14] one also has to temporarily alter edges that are not in the symmetric difference and
this significantly complicates things. Moreover, for the analysis of the JS chain, we can rely on arguments
used (in a somewhat different context) by Jerrum and Sinclair [29] for the analysis of a Markov chain for
sampling (near) perfect matchings of a given graph. This usage of arguments in [29] was, in fact, suggested
by Jerrum and Sinclair [30] for showing that the JS chain is rapidly mixing for stable degree sequences.

We will use the following idea from [29]—used in a different setting—in order to restrict ourselves to
establishing flow between states in G(d), rather than between all states in G′(d). Assume that d is a degree
sequence with = components that is a member of a strongly stable family of degree sequences (with respect
to some :).

Lemma 3.5. Let 5 ′ be a flow on MJS that routes 1/|G′(d) |2 units of flow between any pair of states in G(d),
so that 5 ′(4) ≤ 1/|G′(d) | for all 4 in � (MJS). Then 5 ′ can be extended to a flow 5 on MJS that routes
1/|G′(d) |2 units of flow between any pair of states in G′(d) and has the property that for all 4 in � (MJS)

5 (4) ≤ @(=) 1

|G′(d) | ,

where @(·) is a polynomial whose degree only depends on :JS(d). Moreover, ℓ( 5 ) ≤ ℓ( 5 ′) + 2:JS(d).

Proof sketch. We describe how to extend the flow 5 ′ to 5 . For any � ∈ G′(d) \ G(d) we fix some
i(�) ∈ G(d) within distance : = :JS(d) of �, along with some simple path ?� from � to i(�) in MJS
of length at most : . Note that, for all �, the existence of such a i(�) and of the corresponding path is
guaranteed by the definition of : . Moreover, for � ∈ G(d), we define i(�) = �.

The flow between �,� ′ ∈ G′(d) is now send as follows. First, if � ≠ i(�), route 1/|G′(d) |2 units
of flow from � to i(�) over ?� . Then use the flow-carrying paths used to send 1/|G′(d) |2 units of flow
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between i(�) and i(� ′) in the flow 5 ′ (recall that multiple paths might be used for this in 5 ′). Finally, if
� ′ ≠ i(� ′), use the reverse of ?�′ to route 1/|G′(d) |2 from i(� ′) to � ′. This fully defines the flow 5 ,
which is clearly an extension of 5 ′.

It is straightforward by the definition of 5 that ℓ( 5 ) ≤ ℓ( 5 ′) + 2:JS(d). It remains to show that for any
edge 4 of MJS, 5 (4) and 5 ′(4) are polynomially related. For all � ∈ G(d), we have |i−1(�) | ≤ =3: , as the
in- and out-degrees of MJS are bounded by =3 (Theorem 2.1). By using simple counting arguments, this fact
has two important implications for an edge 4 in � (MJS):

i. Among the paths defined in the beginning of this proof, there are at most :=3(:−1) paths and at most
:=3(:−1) “reverse” paths that could go through 4. Note that each such path ?� (resp. its reverse) is
used at most |G′(d) | times, once for each pair of the form (�,� ′) (resp. of the form (� ′, �)), where
� ′ ∈ G′(d).

ii. Any flow-carrying path of 5 ′ is used in 5 at most =6: times, carrying the same flow each time. So, the
part of the total flow routed through 4 under 5 due to inflating 5 ′ cannot exceed the total flow routed
through 4 under 5 ′ by a factor larger than =6: .

Now combining the above two facts we get that, for any 4 ∈ � (MJS)

5 (4) ≤ 2:=3(:−1)

|G′(d) | + =
6: 5 ′(4) ≤ 2=6: 1

|G′(d) | ,

thus completing the proof. �

We now continue with the proof of Theorem 3.4. It consists of four parts following, in a conceptual
sense, the proof template in [6]. Whenever we refer to [29], the reader is referred to Section 3 of [29].

Proof of Theorem 3.4. We are going to define a flow 5 ′ on MJS as in Lemma 3.5. That is, we want 5 ′ to route
1/|G′(d) |2 units of flow between any pair of states in G(d), so that 5 ′(4) ≤ 1/|G′(d) | for any 4 in � (MJS).
Moreover, we are going to show that 1 ≤ ?1(=) and ℓ( 5 ′) ≤ ?2(=) for some polynomials ?1(·), ?2(·) whose
degrees only depend on : = :JS(d). In fact, we show that it suffices to use ?1(=) = ?2(=) = =2.

Given such an 5 ′, the theorem follows from Lemma 3.5 and the fact that ln( |G′(d) |) is upper bounded
by a polynomial in =. The latter follows from Equation (1) of McKay and Wormald [36] that implies that

|G(d′) | ≤ ==2

for any degree sequence d′ with = components (see also [25]). So, by the definition of |G′(d) | we have

|G′(d) | ≤
(
=(= − 1)

2
+ = + 1

)
==

2
,

and thus ln( |G′(d) |) ≤ 3=3.
Before we define 5 ′, we first introduce some basic terminology similar to that in [6]. Let + be a set of

labeled vertices, let ≺� be a fixed total order on the set {{E, F} : E, F ∈ +} of edges, and let ≺C be a total
order on all circuits on the complete graph  + , i.e., ≺C is a total order on the closed walks in  + that visit
every edge at most once. We fix for every circuit one of its vertices where the walk begins and ends. We
emphasize that one can choose any orderings ≺� and ≺C here, which are not necessarily related nor induced
by an ordering on the vertices.

For given �,� ′ ∈ G(d), let � = �4� ′ be their symmetric difference. We refer to the edges in � � ′

as blue, and the edges in � ′ � as red. A pairing of red and blue edges in � is a bĳective mapping that, for
each node E ∈ + , maps every red edge adjacent to E, to a blue edge adjacent to E. The set of all pairings is
denoted by Ψ(�,� ′), and, with \E the number of red edges adjacent to E (which is the same as the number
of blue edges adjacent to E), we have |Ψ(�,� ′) | = ΠE∈+ \E !. In what follows, it is convenient to slightly
abuse this notation and write Ψ(�4� ′) rather than Ψ(�,� ′).
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3.1.1 Canonical paths and circuit processing

Similar to the approach in [6], the goal is to construct for each pairing k ∈ Ψ(�4� ′) a canonical path
from � to � ′ that carries a |Ψ(�4� ′) |−1 fraction of the total flow from � to � ′ in 5 ′. For notational
convenience, for the remaining of the proof we write DE instead of {D, E} to denote an edge. For a given
pairing k and the total order ≺� given above, we first decompose � into the edge-disjoint union of circuits
in a canonical way. We start with the lexicographicly smallest edge F0F1 in �� and follow the pairing
k until we reach the edge F:F0 that was paired with F0F1. This defines the circuit �1. If �1 = �� , we
are done. Otherwise, we pick the lexicographicly smallest edge in � �1 and repeat this procedure. We
continue generating circuits until �� = �1 ∪ · · · ∪ �B. Note that all circuits have even length and alternate
between red and blue edges, and that they are pairwise edge-disjoint. We form a path

� = /0, /1, . . . , /" = � ′

from � to � ′ in MJS, by processing the circuits �8 in turn according to the total order ≺C . The processing of
a circuit � is the procedure during which all blue edges on � are deleted, and all red edges of � are added to
the current realization, using the three types of transitions in the JS chain mentioned in Subsection 2.1. All
other edges of the current realization remain unchanged. In general, this can be done similarly to the circuit
processing procedure in [29].

Circuit processing [29]. Let � = EG1G2 . . . G@E be a circuit with start node E. We may assume, without
loss of generality, that EG1 is the lexicographicly smallest blue edge adjacent to the starting node E. We first
perform a type 0 transition in which we remove the blue edge EG1. Then we perform a sequence of @−1

2 type
1 transitions in which we add the red edge G8G8+1 and remove the blue edge G8−1G8 for 8 = 1, 3, . . . , @. Finally
we perform a type 2 transition in which we add the red edge EG@ . In particular, this means that the elements
on the canonical path right before and after the processing of a circuit belong to G(d). It is easy to see that
all the intermediate elements that we visit during the processing of the circuit � belong to G′(d) G(d),
i.e., every element has either precisely two nodes with degree deficit one, or one node with degree deficit
two. This is illustrated in Figures 3, 4 and 5 for the circuit in Figure 2.

For the next part, we define the notion of an encoding that can be used to bound the congestion of an
edge in MJS using an injective mapping argument.

E/G3

G1

G2 G4

G5/G8

G6

G7G9

Figure 2: The circuit � = EG1G2G3G4G5G6G7G8G9E with E = G3 and G5 = G8. The blue edges are represented
by the solid edges, and the red edges by the dashed edges.

3.1.2 Encoding

Let C = (/, / ′) be a given transition of the Markov chain. Suppose two graphs � and � ′ use the transition C
over some canonical path for some pairing k ∈ Ψ(�4� ′). Let � = �4� ′. We define the encoding

!C (�,� ′) =
{
(�4(/ ∪ / ′)) − 4�,C if C is a Type 1 transition,
�4(/ ∪ / ′) otherwise,
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E/G3

G1

G2 G4

G5/G8

G6

G7G9−1

−1 E/G3

G1

G2 G4

G5/G8

G6

G7G9

−2

Figure 3: The edge EG1 is removed using a Type 0 transition (left). The edge G1G2 is added and G2G3 = G2E is
removed using a Type 1 transition (right). We have also indicated the non-zero degree deficits.

E/G3

G1

G2 G4

G5/G8

G6

G7G9

−1 −1 E/G3

G1

G2 G4

G5/G8

G6

G7G9

−1

−1

Figure 4: The edge G3G4 is added and G4G5 is removed using a Type 1 transition (left). The edge G5G6 is
added and G6G7 is removed using a Type 1 transition (right).

E/G3

G1

G2 G4

G5/G8

G6

G7G9

−1

−1

E/G3

G1

G2 G4

G5/G8

G6

G7G9

Figure 5: The edge G7G8 = G5G8 is added and G5G9 = G8G9 is removed using a Type 1 transition (left). The
edge EG9 is added using a Type 2 transition (right).

where 4�,C is the first blue edge on the circuit that is currently being processed on the canonical path from
� to � ′ (for the given pairing k). This encoding is of a similar nature as the encoding used in [29]. An
example is given in Figures 6, 7 and 8. We also refer the reader to Figure 1 in [29] for a detailed example.2
The following lemma is crucial for the analysis.

Lemma 3.6. Given C = (/, / ′), !, and k, we can uniquely recover � and � ′. That is, if ! is such that
!C = !C (�,� ′) for some pair (�,� ′), then (�,� ′) is the unique pair for which this is the case, given C, !,
k.

Proof. We give the proof for when C is a Type 1 transition. The cases of the two other types are similar,
and arguably somewhat easier. The proof uses the arguments in [29] interpreted in our setting. First note

2 Although the perfect matching setting might seem different at first glance, it is actually closely related to our setting, with the
only difference that the symmetric difference of two perfect matchings is the union of node-disjoint cycles, whereas in our setting
the symmetric difference of two realizations is the union of edge-disjoint circuits. This is roughly why the notion of pairings is
needed, as they allow us to uniquely determine the circuits. That is, the edge-disjoint circuits determined by the pairing are the
analogue of the node-disjoint cycles in the perfect matching setting in [29].
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that !4(/ ∪ / ′) is a graph in which there are precisely two nodes with odd degree. In particular, the edge
4�,C is the unique edge (having as endpoints these odd degree nodes) that has to be added to !4(/ ∪ / ′) to
obtain � = �4� ′. That is, we have (!4(/ ∪ / ′)) + 4�,C = �. The pairing k then yields a unique circuit
decomposition of � (�) as explained at the beginning of the proof. From the transition C it can be inferred
which circuit is currently being processed, and, moreover, we can infer which edges of that circuit belong to
� and which to � ′. Furthermore, the global ordering ≺C on all circuits can then be used to determine for
every other circuit whether it has been processed already or not. For every such circuit, we can then infer
which edges on it belong to � and which to � ′ by comparing with / (or / ′). Therefore, � and � ′ can be
uniquely recovered from C, ! and k. �

01

02 03

04 G1

E/G3

G2 G4

G5/G8

G6

G7G9 11

12 13

14

Figure 6: Symmetric difference � = �4� ′ where the solid edges represent the edges � and the dashed
edges the edges of � ′. From left to right the circuit are numbered �1, �2 and �3, and assume that this is also
the order in which they are processed.

01

02 03

04 G1

E/G3

G2 G4

G5/G8

G6

G7G9 11

12 13

14

01

02 03

04 G1

E/G3

G2 G4

G5/G8

G6

G7G9 11

12 13

14

Figure 7: The transition C = (/, / ′) that removes the edge G6G7 and adds the edge G5G6 as part of the
processing of �2. Note that �1 has already been processed. The edges in (� (�) ∪ � (� ′)) \ � (�) are left
out.

13



01

02 03

04 G1

E/G3

G2 G4

G5/G8

G6

G7G9 11

12 13

14

Figure 8: The encoding ! = !C (�,� ′), where again the edges in (� (�) ∪ � (� ′)) \ � (�) are left out. Note
that in this case 4�,C = EG1 and that ! is itself an element of G′(d).

3.1.3 Bounding the congestion

We complete the proof by using an injective mapping argument to bound the congestion of the flow 5 ′ on
the edges of MJS. The arguments used are a combination of ideas from [29] and the proof of Lemma 2.5 in
[6] (see also Lemma 1 in [7]). We again focus on Type 1 transitions C as the proofs for the other two types
are similar but simpler.

For a tuple (�,� ′, k), let ?k (�,� ′) denote the canonical path from � to � ′ for pairing k. Let

LC = {!C (�,� ′) | (�,� ′, k) ∈ FC }

be the set of all (distinct) encodings !C , where

FC =
{
(�,� ′, k) : C ∈ ?k (�,� ′)

}
is the set of all tuples (�,� ′, k) such that the canonical path from� to� ′ under pairing k uses the transition
C. A crucial observation is that every encoding !C (�,� ′) itself is an element of G′(d) (see Figure 8 for an
example). This implies that

|LC | ≤ |G′(d) |. (3)

Moreover, with � = �4� ′ and ! = !C (�,� ′), the pairing k has the property that it pairs up the edges
of � (�) � (!) and � (�) ∩ � (!) in such a way that for every node E (with the exception of at most two
nodes) each edge in � (�) � (!) that is incident to E is paired up with an edge in � (�) ∩ � (!) that is
incident to E. However, there are either two nodes for which the incident edges in � (�) � (!) exceed by 2
the incident edges in � (�) ∩� (!), or one node for which the incident edges in � (�) � (!) exceed by 4 the
incident edges in � (�) ∩ � (!). These are exactly the two nodes with degree deficit 1 or the one node with
degree deficit 2 in !; for the example in Figure 8 these are nodes G1 and G6. There k pairs up each edge of
� (�) ∩ � (!) to an edge of � (�) � (!) but also two edges of � (�) � (!) with each other; or in the case
of one node with degree deficit 2, k pairs up each edge of � (�) ∩ � (!) to an edge of � (�) � (!) but also
makes two pairs out of the remaining 4 edges in � (�) � (!). Let Ψ′(!) be the set of all pairings with this
property.3 Note that not every such pairing has to correspond to a tuple (�,� ′, k) for which C ∈ ?k (�,� ′).

By simply counting, we can upper bound |Ψ′(!) | in terms of |Ψ(�) |. We show the calculation for the
case where ! has two nodes with degree deficit 1. The case of one node with degree deficit 2 is very similar
and the same upper bound works there as well. Suppose that D, F are the two nodes of ! with degree deficit
1. Then

|Ψ′(!) | = (\D + 1)!
2

· (\F + 1)!
2

·
∏

E∈+ {D,F }
\E !

3 Remember that we do not need to know � and � ′ in order to determine the set �. It can be found based on ! and the transition
C = (/, / ′), as described in the proof of Lemma 3.6.
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=
(\D + 1) (\F + 1)

4
· |Ψ(�) |

≤ =2 · |Ψ(�) | . (4)

Recall that 5 ′ routes 1/|G′(d) |2 units of flow between any pair of states in G(d) and that for any particular
pair (�,� ′) this flow is equally split among the |Ψ(�4� ′) | canonical paths defined in Subsection 3.1.1.
Putting everything together, we have

|G′(d) |2 5 ′(4) =
∑
(�,�′)

∑
k∈Ψ(�4�′)

1(4 ∈ ?k (�4� ′)) |Ψ(�4� ′) |−1

≤
∑
!∈LC

∑
k′∈Ψ′ (!)

|Ψ(�4� ′) |−1 (using Lemma 3.6)

≤ =2
∑
!∈LC

1 (using (4))

≤ =2 · |G′(d) |. (using (3)) (5)

The usage of Lemma 3.6 for the first inequality works as follows. Every tuple (�,� ′, k) ∈ FC with encoding
!C (�,� ′) generates a unique tuple in {!C (�,� ′)} × Ψ′(!C (�,� ′)). But since, by Lemma 3.6, we can
uniquely recover � and � ′ from !, C and k, we have that

∑
!∈LC

|{!} ×Ψ′(!) | = ∑
!∈LC

∑
k′∈Ψ′ (!) 1 is an

upper bound on the number of canonical paths that use C.
By rearranging (5) we get the upper bound for 5 ′ required in Lemma 3.5. What is left to show is that

ℓ( 5 ′) is not too large. This, however, is determined by the way we defined the canonical paths. It is easy to
see that for any canonical path between any two graphs �,� ′ ∈ G(d) has length at most 3

4 |� (�4�
′) | and,

therefore, ℓ( 5 ′) ≤ =2. This concludes the proof of Theorem 3.4. �

3.2 Flow transformation

The main result of this section, Theorem 3.7, will allow us to utilize Theorem 3.4. While the statement may
seem somewhat involved, essentially we show that, when d comes from a family of strongly stable degree
sequences, an efficient multicommodity flow for the JS chain on G′(d) can be transformed into an efficient
multicommodity flow for the switch chain on G(d). In combination with Theorem 3.4 this implies that if D
is strongly stable, then for any sequence in D there exists an efficient flow for the switch chain. Like in most
parts of this work, for the sake of simplicity, we did not attempt to optimize the bounds in the proof of the
theorem .

Theorem 3.7. Let D be a strongly stable family of degree sequences with respect to some constant : , and
let ?(=) and A (=) be polynomials such that for any d ∈ D there exists an efficient multicommodity flow 5d
for the JS chain on G′(d) with the properties that (i) ℓ( 5 ) ≤ A (=) and (ii) for every edge of MJS, we have
5 (4) ≤ ?(=)/|G′(d) |.

Then there exists a polynomial C (=) such that for all d ∈ D there is a feasible multicommodity flow 6d
for the switch chain on G(d) with the properties that (i) ℓ(6d) ≤ 2:ℓ( 5d), and (ii) for every edge 4 of Msw,
we have

6d (4) ≤ C (=):
?(=)
|G(d) | . (6)

Proof. Let d ∈ D. For simplicity we will write 5 and 6 instead of 5d and 6d respectively. We let PGH refer
to the set of simple paths between G and H in MJS (not those in Msw). We first introduce some additional
notation.
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For every pair (G, H) ∈ G′(3) × G′(d) with G ≠ H, and for any ? ∈ PGH , we write U(?) = 5 (?) |G′(d) |2.
Recall that since the stationary distribution of the JS chain is uniform on G′(d) we have ∑

?∈PGH 5 (?) =
|G′(d) |−2. Thus,

∑
?∈PGH U(?) = 1. Moreover, we define U(4) = ∑

?∈PGH :4∈? U(?) = 5 (4) |G′(d) |2.
Now, for every � ∈ G′(d) G(d) choose some i(�) ∈ G(d) that is within distance : of � in the JS

chain, and take i(�) = � for � ∈ G(d). Based on the arguments in the proof of Proposition 2.3, it follows
that for any � ∈ G(d),

|i−1(�) | ≤ =3: , (7)

using that the maximum in-degree of any element in MJS is upper bounded by =3. In particular, this implies
that

|G′(d) |
|G(d) | ≤ =

3: . (8)

Let the flow ℎ be defined as follows for any given pair (G, H). If (G, H) ∈ G(d) × G(d), take ℎ(?) =
U(?)/|G(d) |2 for all ? ∈ PGH . If either G or H is not contained in G(d), take ℎ(?) = 0 for every
? ∈ PGH . Note that ℎ is a multicommodity flow that routes 1/|G(d) |2 units of flow between any pair
(G, H) ∈ G(d) × G(d), and zero units of flow between any other pair of states in G′(d).

Note that

ℎ(4) ≤ |G
′(d) |2
|G(d) |2

· 5 (4) ≤ |G
′(d) |2
|G(d) |2

?(=)
|G′(d) | =

?(=)
|G(d) |

|G′(d) |
|G(d) | ≤ =

3: · ?(=)|G(d) | , (9)

using the definition of ℎ in the first inequality, the assumption on 5 in the second inequality, and the upper
bound of (8) in the last one.

Next, we merge the “auxiliary states” in G′(d) G(d), i.e., the states not reached by the switch chain,
with the elements of G(d). Informally speaking, for every � ∈ G(d) we merge all the nodes in i−1(�)
into a supernode. Self-loops created in this process are removed, and parallel edges between states are
merged into one edge that gets all the flow of the parallel edges. Formally, we consider the graph Γ
where + (Γ) = G(d) and 4 = (�, � ′) ∈ � (Γ) if and only if � and � ′ are switch adjacent or if there exist
� ∈ i−1(�) and � ′ ∈ i−1(� ′) such that � and � ′ are JS adjacent. Moreover, for a given ℎ-flow carrying
path (�1, �2, . . . , �@) = ? ∈ PGH , let ?′Γ = (i(�1), i(�2), . . . , i(�@)) be the corresponding (possibly
non-simple) directed path in Γ. Any self-loops and cycles can be removed from ?′

Γ
and let ?Γ be the

resulting simple path in Γ. Over ?Γ we route ℎΓ(?Γ) = ℎ(?) units of flow. Note that ℎΓ is a flow that
routes 1/|G(d) |2 units of flow between any pair of states (G, H) ∈ G(d) × G(d) in the graph Γ and that
ℓ(ℎΓ) ≤ ℓ( 5 ). Furthermore, the flow ℎΓ on an edge (�, � ′) ∈ � (Γ) is then bounded by

ℎΓ(�, � ′) ≤
∑

(�,�′) ∈i−1 (� )×i−1 (� ′)
� and �′ are JS adjacent

ℎ(�,� ′) , (10)

where the inequality (instead of an equality) follows from the fact that when we map a path ? ∈ PGH to the
corresponding path ?Γ, some edges of the intermediate path ?′

Γ
may be deleted. Using (7), it follows that

|i−1(�) × i−1(� ′) | ≤ =3: · =3: = =6: and therefore, in combination with (9) and (10), we have that

ℎΓ(4) ≤ =3: · =6: · ?(=)|G(d) | . (11)

Now recall how � (Γ) was defined. An edge (�, � ′) might have been added because: (i) � and � ′ are
switch adjacent (we call these edges of Γ legal), or (ii) � and � ′ are not switch adjacent but there exist
� ∈ i−1(�) and � ′ ∈ i−1(� ′) that are JS adjacent (we call these edges of Γ illegal). The final step of the
proof consists of showing that the flow on every illegal edge in � (Γ) can be rerouted over a “short” path
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x y x y

Figure 9: The dashed edge on the left represents an illegal edge, and the bold path represents a “short”
detour. The shortcutted path on the right is the result of removing any loops and cycles.

consisting only of legal edges. In particular, for every flow carrying path ? using 4, we are going to show
that the flow ℎΓ(?) can rerouted over some legal detour, the length of which is bounded by a multiple of : .
Doing this iteratively for every remaining illegal edge on ?, we obtain a directed path ?′′ only using legal
edges, i.e., edges of Msw. Of course, ?′′ might not be simple, so any self-loops and cycles can be removed,
as before, to obtain the simple legal path ?′. Figure 9 illustrates this procedure for a path with a single illegal
edge. Note that deleting self-loops and cycles only decreases the amount of flow on an edge.

The crucial observation here is that if (�, � ′) ∈ � (Γ), then |� (�)4� (� ′) | ≤ 4: . That is, even though
� and � ′ might not be switch adjacent, they are not too far apart. To see this, first note that the symmetric
difference of any two JS adjacent graphs has size at most 2. Moreover, if one of any two JS adjacent
graphs is in G(d), then their symmetric difference has size 1. In particular, for any �∗ ∈ G′(d), we have
|� (�∗)4� (i(�∗)) | ≤ 2: − 1.

Clearly, if (�, � ′) ∈ � (Γ) is legal, then |� (�)4� (� ′) | = 4 ≤ 4: . Assume (�, � ′) ∈ � (Γ) is illegal.
Then there exist JS adjacent � ∈ i−1(�) and � ′ ∈ i−1(� ′) and according to the above we have

|� (�)4� (� ′) | ≤ |� (�)4� (�) | + |� (�)4� (� ′) | + |� (� ′)4� (� ′) |
≤ 2: − 1 + 2 + 2: − 1 ≤ 4: .

Moreover, this implies that we can go from � to � ′ in a “small” number of moves in the switch chain. This
easily follows from most results showing that Msw is connected. Specifically, here we use the following
result of Erdős, Király, and Miklós [12] which implies that we can go from � to � ′ in 2: switches.

Theorem 3.8 (follows from Theorem 3.6 in [12]). Let d be a degree sequence. For any two graphs
�, � ′ ∈ G(d), � can be transformed into � ′ using at most 1

2 |� (�)4� (�
′) | switches.

For every illegal edge 4 ∈ � (Γ), we choose such a (simple) path from � to � ′ with at most 2: transitions
and reroute the flow of 4 over this path. Note that for any legal edge 4 ∈ � (Γ), the number of illegal edge
detours that use 4 for this rerouting procedure, is at most (=4)2: · (=4)2: = =16: , using the fact that in the
state space graph of the switch chain the maximum degree of an element is at most =4 and any illegal edge
using 4 in its rerouting procedure must lie within distance 2: of 4. Combining this with (11), we see that the
resulting flow, 6, satisfies

6(4) ≤ ?(=) · =9: + ?(=) · =16:

|G(d) | . (12)

Note that ℓ(6) ≤ 2:ℓ(ℎΓ). This holds because every illegal edge on a flow-carrying path gives rise to at
most 2: additional edges as a result of rerouting the flow over legal edges, and the removal of loops and
cycles from any resulting non-simple path can only decrease its length. Combining this inequality with
ℓ(ℎΓ) ≤ ℓ( 5 ) (as we noted above), we get ℓ(6) ≤ 2:ℓ( 5 ). This completes the proof of (6), as we have now
constructed a feasible multicommodity flow 6 on Msw with the desired properties. �

This also completes the proof of Theorem 3.1.
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Remark 3.9. Looking back, Lemma 3.5 is not needed for proving Theorem 3.1. Careful consideration
of the proof of Theorem 3.7 shows that we can only focus on flow between states in G(d), since the flow
ℎ given therein only has positive flow between states corresponding to elements in G(d). That is, when
defining the flow ℎ, we essentially forget about all flow in 5 between any pair of states where at least one
state is an auxiliary state, i.e., an element of G′(d) G(d). Said differently, in Theorem 3.7 we could start
with the assumption that 5 routes 1/|G′(d) |2 units of flow between any pair of states in G(d) in MJS, and
then the transformation still works. However, the formulations of Theorems 3.4 and 3.7 are more natural for
describing a comparison between the JS and switch chains. In particular, Lemma 3.5 is needed to formally
prove that the JS chain is rapidly mixing for strongly stable degree sequences.

4 Conclusion

We have shown that the switch Markov chain is rapidly mixing for the class of strongly stable degree
sequences by using a novel proof approach for this problem. We believe that our ideas introduced in Section
3 can be also used to simplify the switch chain analyses in settings where there is some given forbidden
edge set, the elements of which cannot be used in any (bipartite) realization [23, 25, 13, 15]. This is an
interesting direction for future work, as it captures the case of sampling directed graphs. Further, it is not
clear whether there exist degree sequence families that are %-stable but not strongly stable. For instance, in a
recent work by Gao and Wormald [21], who provide a very efficient non-MCMC approximate sampler for
certain power-law degree sequences, it is argued that these power-law degree sequences are %-stable. Is it
the case these sequences are strongly stable as well? A central open question is how to go beyond (strong)
stability.
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