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Abstract

We obtain a polynomial-time deterministic
(

2e
e−1 + ε

)
-approximation algorithm for maximizing symmetric submodular

functions under a budget constraint. Although there exist randomized algorithms with better expected performance, our
algorithm achieves the best known factor achieved by a deterministic algorithm, improving on the previously known
factor of 6. Furthermore, it is simple, combining two elegant algorithms for related problems; the local search algorithm
of Feige, Mirrokni and Vondrák [1] for unconstrained submodular maximization, and the greedy algorithm of Sviridenko
[2] for non-decreasing submodular maximization subject to a knapsack constraint.
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1. Introduction

We study the problem of maximizing a symmetric sub-
modular objective subject to a knapsack/budget constraint.
A submodular function is called symmetric when the value
of any set S equals the value of its complement. Sym-
metric submodular functions form a prominent subclass
of non-monotone submodular functions that includes cut
functions, and has received considerable attention in the
operations research literature, see, e.g., [3, 4].

For maximizing a non-decreasing submodular objective
subject to a knapsack constraint there is a deterministic
algorithm due to Sviridenko [2], achieving an approximation
factor of e

e−1 . This is the best possible factor in polynomial
time, unless P = NP [5]. Sviridenko’s algorithm is an
adaptation of a greedy algorithm of Khuller et al. [6], which
was designed for the special case of the budgeted maximum
coverage problem.

Regarding maximization of non-monotone submodular
functions subject to knapsack or other type of constraints,
there is a vast literature, going back several decades, see,
e.g., [7, 8]. More recently, Lee et al. [9] provided the first
constant factor randomized algorithm for submodular max-
imization under k matroid or k knapsack constraints, with
factors k + 2 + 1

k and 5 respectively. For k knapsack con-
straints, Fadaei et al. [10] improved the heavy/light item
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approach of [9] and reduced the factor to 4. The prob-
lem was also studied by Gupta et al. [11] who proposed a
(potentially randomized) algorithm, achieving a (4 + α)-
approximation for a single knapsack constraint, where α
is the approximation guarantee of any algorithm for the
unconstrained submodular maximization problem, used
here as a subroutine. In the case of symmetric submodular
functions the algorithm of Gupta et al. [11], coupled, e.g.,
with the deterministic 2-approximation algorithm of Feige
et al. [5] or that of Feldman [12], becomes a deterministic
6-approximation algorithm. In fact, before our work, this
was the best known approximation factor for the problem
achieved by a deterministic algorithm. Later on, Chekuri
et al. [13] suggested a randomized 3.07-approximation al-
gorithm improving the previously known results. Finally,
Feldman et al. [14] and Kulik et al. [15] proposed their
own randomized algorithms when there are knapsack con-
straints, achieving an e-approximation.3

Finally, combinations of local search and greedy al-
gorithms have been used before in submodular function
maximization. Fadaei et al. [10] used a variant of local
search and the continuous greedy algorithm [16] for max-
imizing a non-monotone submodular function subject to
packing polytope constraints. More recently, Sarpatwar et
al. [17] combined Sviridenko’s algorithm [2] with a variant
of local search for maximizing a monotone submodular
function subject to a knapsack and k matroid constraints.

Our contribution: In this work we obtain a simple, de-
terministic

(
2e
e−1 + ε

)
-approximation algorithm for sym-

3The algorithm of Kulik et al. [15] can be derandomized without
any performance loss, but only by assuming an additional oracle
for the extension by expectation, say V , of the objective function v.
When only an oracle for v is available, estimation of V by sampling
is required.

Preprint submitted to Elsevier July 21, 2020



metric submodular maximization subject to a knapsack
constraint. Note that 2e

e−1 ≈ 3.164. This is the best known
factor achieved by a deterministic algorithm assuming only
a value oracle for the objective function. We design our
algorithm by combining appropriate adaptations of two
elegant well-known algorithms. The first one is the local
search algorithm of Feige et al. [1] that was designed for
unconstrained (symmetric) submodular maximization. The
second one is Sviridenko’s algorithm [2] for non-decreasing
submodular maximization subject to a knapsack constraint.
From a technical point of view, our use of local search in
order to identify regions of the function’s domain, where
results for non-decreasing submodular functions can be
directly applied is novel.

To see why local search comes handy for a symmetric
submodular function v(·), suppose we could produce two
local optima, namely a set S and its complement. It is not
hard to prove that the restriction of v(·) to each local opti-
mum is a non-decreasing submodular function. This allows
us to utilize Sviridenko’s algorithm [2] on the two subsets
and then show that one of the two solutions attains a good
approximation. The running time is still an issue under this
approach, however, since finding exact local optima is not
guaranteed to run in polynomial time [18]. What comes to
rescue is that even by finding approximate local optima, the
objective function, restricted within each of them, remains
almost non-decreasing in a certain sense. This way we are
still able to appropriately adjust Sviridenko’s algorithm
[2] with only a small loss. This “robustness under small
deviations from monotonicity” approach that allows the use
of known results for monotone objectives was introduced
by the authors in [19]. There the main application was the
design of truthful, budget-feasible mechanisms.

2. Notation and Preliminaries

We use A = [n] = {1, 2, ..., n} to denote a set of n items.
Each item i is associated with an integral cost ci. There
is also a valuation function v : 2A → Q≥0 and an integral
budget B > 0. For S ⊆ A, v(S) is the value derived if the
set S is selected (for singletons, we will often write v(i)
instead of v({i})). Therefore, the goal is to select a set S
that maximizes v(S) subject to the constraint

∑
i∈S ci ≤ B.

We assume oracle access to v via value queries, i.e., we
assume the existence of a polynomial time value oracle that
returns v(S) when given as input a set S.

We focus on a natural subclass of submodular valuation
functions that includes cut functions, namely non-negative
symmetric submodular functions. Throughout this work
we make the natural assumption that v(∅) = 0.

Definition 2.1. A function v, defined on 2A for some set
A, is

– submodular, if v(S ∪{i})− v(S) ≥ v(T ∪{i})− v(T )
for any S ⊆ T ⊆ A, and i 6∈ T ,

– non-decreasing, if v(S) ≤ v(T ) for any S ⊆ T ⊆ A,

– symmetric if v(S) = v(A S) for any S ⊆ A.

It is easy to see that v cannot be both symmetric and
non-decreasing unless it is a constant function. In fact, if
this is the case and v(∅) = 0, then v(S) = 0, for all S ⊆ A.
We also state an alternative definition of a submodular
function, which will be useful later.

Theorem 2.2 (Nemhauser et al. [7]). A set function v is
submodular if and only if for all S, T ⊆ A we have

v(T ) ≤ v(S) +
∑
i∈T S

(v(S ∪ {i})− v(S))

−
∑
i∈S T

(v(S ∪ T )− v(S ∪ T {i})) .

We often need to argue about optimal solutions of sub-
instances, from an instance we begin with. Given a cost
vector c, and a subset X ⊆ A, we denote by cX the projec-
tion of c on X. We also let opt(X, v, cX , B) be the value of
an optimal solution to the restriction of this instance on X,
i.e., opt(X, v, cX , B) = maxS:S⊆X, c(S)≤B v(S). Similarly,
opt(X, v, cX ,∞) denotes the value of an optimal solution
to the unconstrained version of the problem restricted on
X. For the sake of readability, we usually drop the valua-
tion function and the cost vector, when they are clear from
context, and write opt(X,B) or opt(X,∞).

Finally, we make one further assumption: we assume
there is at most one item whose cost exceeds the budget.
As shown in Lemma 3.1, this is without loss of generality.

Local Optima and Local Search. Given v : 2A → Q, a
set S ⊆ A is called a (1 + ε)-approximate local optimum of
v, if (1 + ε)v(S) ≥ v(S {i}) and (1 + ε)v(S) ≥ v(S ∪ {i})
for every i ∈ A. When ε = 0, S is called an exact local
optimum of v. Note that if v is symmetric submodular,
then S is a (1 + ε)-approximate local optimum if and only
if A S is a (1 + ε)-approximate local optimum.

Approximate local optima produce good approxima-
tions in unconstrained maximization of general submodular
functions [1]. However, here they are of interest for a quite
different reason that becomes apparent in Lemma 4.1. We
can efficiently find approximate local optima using the local
search algorithm ApproxLS of [1]. Note that this is an
algorithm for the unconstrained version of the problem,
when there is no budget constraint.

If we care to find an exact local optimum, we can simply
set ε = 0. In this case, however, we cannot argue about
the running time of the algorithm in general.

Lemma 2.3 (inferred from [1]). Given a submodular func-
tion v : 2[n] → Q≥0 and a value oracle for v, ApproxLS(A,
v, ε) outputs a

(
1 + ε

n2

)
-approximate local optimum using

O
(
1
εn

3 log n
)

calls to the oracle.

3. Instances with Costs Exceeding the Budget

Consider an instance with a symmetric submodular
objective function, where there exist items i with ci > B;

2



ApproxLS(A, v, ε) [1]

1 S = {i∗}, where i∗ ∈ arg maxi∈A v(i)
2 while there exists some a such that

max{v(S ∪ {a}), v(S {a})} > (1 + ε/n2)v(S) do

3 if v(S ∪ {a}) > (1 + ε/n2)v(S) then

4 S = S ∪ {a}
5 else
6 S = S {a}

7 return S

we call such items expensive. The presence of expensive
items can create infeasible solutions of very high value and
make an analog of Lemma 4.3 (and thus of Lemma 4.1)
impossible to prove. At first glance, it may seem reasonable
to just discard expensive items, since they are not included
in any feasible solution anyway. However, simply discarding
them could destroy the symmetry of the function, since it
may no longer be guaranteed that v(S) = v(A′ S), where
A′ is the new shrunk set of items.

Let I denote the set of all instances of the problem with
a symmetric submodular objective, and let J ⊆ I denote
the set of all instances with at most one expensive item, i.e.,
J contains the instances where at most one item has cost
more than B. Given X ⊆ A, we let c(X) =

∑
i∈X ci. The

next lemma, together with its corollary, show that, when
dealing with symmetric submodular functions, we may only
consider instances in J without any loss of generality.

Lemma 3.1. Given an instance I = (A, v, c, B) ∈ I, we
can efficiently construct an instance J = (A′, v′, c′, B) ∈ J
such that:

(i) Every feasible solution of I is a feasible solution of J
and vice versa.

(ii) If X is a feasible solution of I, then v(X) = v′(X)
and c(X) = c′(X). In particular, opt(J) = opt(I).

(iii) The function v′ (defined on the set A′) is symmetric
submodular.

Proof. Let E = {i ∈ A | ci > B} be the set of expensive
items and define A′ = (A E) ∪ {iE}, where iE is a new
item replacing the whole set E. For i ∈ A E we define
c′i = ci, while c′iE = B + 1. Finally, v′ is defined on subsets
of A′ as follows

v′(T ) =

{
v(T ) , if T ⊆ A E ,
v((T {iE}) ∪ E) , otherwise .

Now suppose X is a budget-feasible solution of I. Then
c(X) ≤ B and thus X ⊆ A E. But then, by the definition
of c′, c′(X) = c(X) ≤ B as well, and therefore X is also a
budget-feasible solution of J . Moreover, v′(X) = v(X) by
the definition of v′. We conclude that opt(I) ≤ opt(J).

The proof that every feasible solution of J is a feasible
solution of I is almost identical. This implies opt(J) ≤
opt(I), and therefore opt(J) = opt(I).

To see that v′ is symmetric, consider a set S ⊆ A′.
Without loss of generality, we may assume that iE ∈ S (or
else we just exchange the roles of S and A′ S). By the
definition of v′ and the fact that v is symmetric, we have

v′(S) = v((S {iE}) ∪ E) = v(A (S ∪ E)) = v′(A′ S) .

Finally, we show the submodularity of v′. Let S ⊆ T ⊆
A′. We are going to consider a few cases with respect to
iE . If iE ∈ S ∩ T , then, by the definition of v′ and the
submodularity of v, we have that for any i /∈ T ,

v′(S ∪ {i})− v′(S) = v(S ∪ {i})− v(S)

≥ v(T ∪ {i})− v(T )

= v′(T ∪ {i})− v′(T ) .

Similarly, if iE ∈ T but iE /∈ S, then for any i /∈ T ,

v′(S ∪ {i})− v′(S) = v(S ∪ {i})− v(S)

≥ v(((T {iE}) ∪ E) ∪ {i})
−v((T {iE}) ∪ E)

= v′(T ∪ {i})− v′(T ) .

When iE /∈ T , we consider two subcases for the different
i /∈ T . First, for any i /∈ T, i 6= iE exactly the same
equalities and inequalities as in the first case hold. Second,
for i = iE assume that E = {i1, . . . , i|E|} and let E0 = ∅
and Ek = {i1, . . . , ik} for k ∈ [|E|]. We have,

v′(S ∪ {iE})− v′(S) = v(S ∪ E)− v(S)

=

|E|∑
k=1

v(S ∪ Ek)− v(S ∪ Ek−1)

≥
|E|∑
k=1

v(T ∪ Ek)− v(T ∪ Ek−1)

= v(T ∪ E)− v(T )

= v′(T ∪ {iE})− v′(T ) .

To see why the inequality holds, note that for each k ∈ [|E|],
we have S∪Ek−1 ⊆ T∪Ek−1 ⊆ A and ik /∈ T∪Ek−1. Thus,
by the submodularity of v, we get v(S∪Ek)−v(S∪Ek−1) ≥
v(T ∪ Ek)− v(T ∪ Ek−1).

Now, it is not hard to see that we can turn any (approx-
imate) algorithmic result on J to the same algorithmic
result on I. This is summarized in the following corollary.

Corollary 3.2. Given a polynomial-time algorithm alg′

that achieves a ρ-approximation on instances in J , we
can efficiently construct a polynomial-time ρ-approximation
algorithm alg that works for all instances in I.

Proof. The description of alg is quite straightforward.
Given an instance I = (A, v, c, B) ∈ I, alg first constructs
instance J = (A′, v′, c′, B) ∈ J , as described in the proof
of Lemma 3.1. Then alg runs alg′ with input J and
returns its output. Clearly, if alg′ runs in polynomial
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time, so does alg. If X = alg′(J) = alg(I), then X
is feasible with respect to J and opt(J) ≤ ρ · v′(X). By
Lemma 3.1 we get that X is feasible with respect to I and
opt(I) = opt(J) ≤ ρ · v′(X) = ρ · v(X). This establishes
the approximation ratio of alg.

4. A Simple Algorithm

The main result of this section is a polynomial-time,
deterministic

(
2e
e−1 + ε

)
-approximation algorithm for sym-

metric submodular functions. Throughout the section we
assume there is at most one item with cost exceeding B.

Since our function is not monotone, we cannot directly
apply the result of [2], which gives an optimal greedy algo-
rithm for non-decreasing submodular maximization subject
to a knapsack constraint. Instead, our main idea is to com-
bine appropriately the result of [2] with the local search
used for unconstrained symmetric submodular maximiza-
tion [1]. At a high level, what happens is that local search
produces an approximate solution S for the unconstrained
problem, and while this does not look related to our goal
at first sight, v is “close to being non-decreasing” on both
S and A S. This becomes precise in Lemma 4.1 below,
but the point is that running a modification of the greedy
algorithm of [2], on both S and A S will now produce at
least one good enough solution.

LS-Greedy(A, v, c, B, ε)

1 S = ApproxLS(A, v, ε/4)
2 T1 = VarGreedy(S, v, cS , B)
3 T2 = VarGreedy(A S, v, cA S , B)
4 Let T be the best solution among T1 and T2
5 return T

The first component of our algorithm is the local search
algorithm of [1]. By Lemma 2.3 and the fact that v is
symmetric, both S and A S are

(
1 + ε

4n2

)
-approximate

local optima. We can now quantify the crucial observation
that v is close to being non-decreasing within the approx-
imate local optima S and A S. Actually, we only need
this property on the local optimum that contains the best
feasible solution. More precisely, the next lemma deals
with the restriction of v to an approximate local optimum
X that contains a feasible solution of value comparable
to that of the globally optimal solution. (Note that any
approximate local optimum or its complement satisfy the
latter property.) Then any negative marginal value—of
any item and with respect to any subset of X—is tiny
compared to the value of an optimal solution within X.

Lemma 4.1. Let S be a
(
1 + ε

4n2

)
-approximate local opti-

mum and consider

X ∈ arg max
Z∈{S,A S}

opt(Z,B) .

Then, for every T ( X and every i ∈ X T , we have
v(T ∪ {i})− v(T ) ≥ − ε

n opt(X,B).

Before proving Lemma 4.1, we begin with a simple fact
and a useful lemma. We note that Fact 4.2 and Lemma 4.3
below require only subadditivity. Submodularity is used
later, within the proof of Lemma 4.1.

Fact 4.2. For any S ⊆ A, max{opt(S,B),opt(A S,B)} ≥
0.5opt(A,B) since opt(S,B)+opt(A S,B) ≥ opt(A,B)
by subadditivity.

Lemma 4.3. For any S ⊆ A, opt(S,∞) ≤ 2n·opt(A,B).

Proof. Let S∗ ⊆ S be such that v(S∗) = opt(S,∞). By
subadditivity we have opt(S,∞) = v(S∗) ≤

∑
i∈S∗ v(i).

Consider three cases with respect to {i ∈ A | ci > B}.

If {i ∈ A | ci > B} = ∅, then by the fact that every
singleton is a feasible solution we have

∑
i∈S∗ v(i) ≤ n ·

maxi∈A v(i) ≤ n · opt(A,B).

If {i ∈ A | ci > B} = {x} * S∗, then every singleton
in A {x} is a feasible solution, and like before we have∑
i∈S∗ v(i) ≤ (n−1) ·maxi∈A {x} v(i) ≤ (n−1) ·opt(A,B).

If {i ∈ A | ci > B} = {x} ⊆ S∗, then we need to bound
v(x). Since v is symmetric we have v(x) = v(A {x}) ≤∑
i∈A {x} v(i) ≤ (n − 1) · maxi∈A {x} v(i). Therefore, by

using again that every singleton in A {x} is a feasible solu-
tion, we have

∑
i∈S∗ v(i) ≤ v(x)+(n−1)·maxi∈A {x} v(i) ≤

(2n− 2) ·maxi∈A {x} v(i) ≤ 2n · opt(A,B).

Proof of Lemma 4.1. By Fact 4.2 we have opt(X,B) ≥
0.5opt(A,B). Let T ⊆ X {i} for some i ∈ X. By sub-
modularity we have v(T ∪ {i})− v(T ) ≥ v(X)− v(X {i}).
Since S is a

(
1 + ε

4n2

)
-approximate local optimum and

v is symmetric, X is also a
(
1 + ε

4n2

)
-approximate local

optimum. As a result, v(X {i}) ≤
(
1 + ε

4n2

)
v(X) and

thus v(X)− v(X {i}) ≥ − ε
4n2 v(X) ≥ − ε

4n2 opt(X,∞) ≥
− ε

2n opt(A,B) ≥ − ε
n opt(X,B), where the third inequal-

ity follows from Lemma 4.3.

The second component of LS-Greedy is an appropri-
ate modification of the greedy algorithm of [2]. It first
enumerates all solutions of size at most 3. Then, starting
from each feasible 3-set, it builds a greedy solution, and it
outputs the best among these Θ(n3) solutions. Here this
idea is adjusted for non-monotone submodular functions.

By Fact 4.2, at least one of S and A S contains a
feasible solution of value at least 0.5opt(A,B). Lemma
4.1 guarantees that within this set, v is very close to a
non-decreasing submodular function. This is sufficient for
VarGreedy to perform almost as well as if v was non-
decreasing.

Theorem 4.4. For any ε > 0, algorithm LS-Greedy
achieves a

(
2e
e−1 + ε

)
-approximation.

Proof. Recall that VarGreedy runs on both S and A
S and LS-Greedy returns the best solution of these
two. We may assume, without loss of generality that
opt(S,B) = max{opt(S,B),opt(A S,B)} (the case for
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VarGreedy(A, v, c, B)

1 Let S1 be the best feasible solution of cardinality at
most 3 (by enumerating them all)

2 S2 = ∅
3 for every U ⊆ A with |U | = 3 and

∑
i∈U ci ≤ B

do
4 S0 = U, t = 1, A0 = A U
5 while At−1 6= ∅ do

6 Find mt = max
i∈At−1

v(St−1 ∪ {i})− v(St−1)

ci
7 Let it be an element of At−1 that attains

mt

8 if mt ≥ 0 and
∑
i∈St−1∪{it} ci ≤ B then

9 St = St−1 ∪ {it}
10 else
11 St = St−1

12 At = At−1 {it}
13 t = t+ 1

14 if v(St−1) > v(S2) then
15 S2 = St−1

16 return S ∈ arg max
X∈{S1,S2}

v(X)

A S being symmetric). By Fact 4.2 we have opt(S,B) ≥
0.5opt(A,B). So, it suffices to show that running Var-
Greedy on S outputs a set of value at least (1 − 1/e −
ε)opt(S,B).

In what follows we analyze the approximation ratio
of VarGreedy(S, v, c, B) with respect to opt(S,B). For
this, we follow closely the proof of the main result in [2].

If there is an optimal solution for our problem restricted
on S, of cardinality one, two or three, then the set S1

produced by VarGreedy will be such a solution. Hence,
assume that the cardinality of any optimal solution is at
least four and let S∗ be such a solution. If necessary,
reorder the elements of S∗ = {j1, . . . , j|S∗|} so that j1 =
arg max` v({j`}), and jk+1 = arg max`>k[v({j1, . . . , jk, j`})
− v({j1, . . . , jk})]. Let Y = {j1, j2, j3}.

For notational convenience, we will use the function
g(·) = v(·) − v(Y ). It is straightforward that g(·) is sub-
modular. Moreover, the following fact follows from [2].

Fact 4.5. g(X∪{i})−g(X) ≤ 1
3v(Y ), for any Y ⊆ X ⊆ S

and i ∈ S∗ X.

Consider the execution of lines 3–13 of VarGreedy
with initial set U = Y . Let t∗ + 1 be the first time when
an element it∗+1 ∈ S∗ is not added to St

∗
. In fact, we

assume that t∗+ 1 is the first time when St = St−1. To see
that this is without loss of generality, if there is some time
τ < t∗+ 1 such that iτ is not added to Sτ−1, then—by the
definition of t∗ + 1—it must be the case that iτ /∈ S∗. But
then, we may consider the instance (S {iτ}, v, cS {iτ}, B)
instead. We have v(S∗) = opt(S {iτ}, B) = opt(S,B)

and the greedy solution constructed in the iteration where
S0 = Y is exactly the same as before. We are going to
distinguish two cases.

Case 1. For all t ∈ [t∗],mt ≥ 0, but mt∗+1 < 0. Using
Theorem 2.2 for S∗ and St

∗
we have

g(S∗) ≤ g(St
∗
) +

∑
i∈S∗ St∗

(g(St
∗
∪ {i})− g(St

∗
))

−
∑

i∈St∗ S∗

(g(St
∗
∪ S∗)− g(St

∗
∪ S∗ {i}))

= g(St
∗
) +

∑
i∈S∗ St∗

(v(St
∗
∪ {i})− v(St

∗
))

−
∑

i∈St∗ S∗

(v(St
∗
∪ S∗)− v(St

∗
∪ S∗ {i}))

≤ g(St
∗
) +

∑
i∈S∗ St∗

cimt∗+1

−|St
∗
S∗|
(
− ε
n
opt(S,B)

)
≤ g(St

∗
) + εopt(S,B) ,

Here, the second to last inequality holds by Lemma 4.1
and by the assumptions we have made. That is, for every
i ∈ S∗ St

∗
, we have that i ∈ At

∗
, since we assumed

that t∗ + 1 is the first time when St = St−1. Hence,
up until time t∗, At

∗
contains all the items apart from

St
∗
. This implies that for every i ∈ S∗ St

∗
, we have that

v(St
∗ ∪{i})−v(St

∗
) ≤ cimt∗+1, by the definition of mt∗+1.

Therefore, we may conclude that

v(St
∗
) = v(Y ) + g(St

∗
)

≥ v(Y ) + g(S∗)− εopt(S,B)

= (1− ε)opt(S,B) .

Case 2. For all t ∈ [t∗+1],mt ≥ 0, but
∑
i∈St∗∪{it∗+1} ci >

B while
∑
i∈St∗ ci ≤ B. Using Theorem 2.2 for S∗ and

each of St, t ∈ [t∗] ∪ {0}, as well as Lemma 4.1, we have

g(S∗) ≤ g(St) +
∑

i∈S∗ St

(g(St ∪ {i})− g(St))

−
∑

i∈St S∗

(g(St ∪ S∗)− g(St ∪ S∗ {i}))

= g(St) +
∑

i∈S∗ St

(v(St ∪ {i})− v(St))

−
∑

i∈St S∗

(v(St ∪ S∗)− v(St ∪ S∗ {i}))

≤ g(St) +
∑

i∈S∗ St

(v(St ∪ {i})− v(St))

−|St S∗|
(
− ε
n
opt(S,B)

)
≤ g(St) +

∑
i∈S∗ St

(v(St ∪ {i})− v(St))

+εopt(S,B) ,

and therefore

g(S∗)− εopt(S,B) ≤ g(St) +
∑

i∈S∗ St

(v(St ∪ {i})− v(St))
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≤ g(St) +
∑

i∈S∗ St

cimt+1

≤ g(St) +

(
B −

∑
i∈Y

ci

)
mt+1 ,

for all t ∈ [t∗] ∪ {0}.
For the last part of the proof we need the following

inequality of Wolsey [8].

Theorem 4.6 (Wolsey [8]). Let k and s be arbitrary
positive integers, and ρ1, . . . , ρk be arbitrary reals with
z1 =

∑k
i=1 ρi and z2 = minx∈[k]

(∑x−1
i=1 ρi + sρx

)
> 0.

Then z1/z2 ≥ 1− (1− 1/s)k ≥ 1− e− ks .

For any t ≥ 1, define Bt =
∑t
τ=1 ciτ , and let B0 = 0,

k = Bt∗+1 and s = B −
∑
i∈Y ci. Also define ρ1, . . . , ρk so

that for Bt < i ≤ Bt+1, ρi = mt+1. It is easy to see that

g(St
∗
∪ {it∗+1}) =

t∗+1∑
τ=1

ciτmiτ =

k∑
i=1

ρi ,

and similarly, for each of St, t ∈ [t∗] ∪ {0},

g(St) =

t∑
τ=1

ciτmiτ =

Bt∑
i=1

ρi .

As noted in [2], since the ρis are nonnegative we have

min
x∈[k]

(
x−1∑
i=1

ρi + sρx

)
= min
t∈[t∗]∪{0}

(
Bt∑
i=1

ρi + sρBt+1

)
,

and therefore

g(S∗)− εopt(S,B) ≤ min
x∈[k]

(
x−1∑
i=1

ρi + sρx

)
.

So, as a direct application of Theorem 4.6 we have

g(St
∗ ∪ {it∗+1})

g(S∗)− εopt(S,B)
≥ 1− e− ks > 1− e−1 .

Finally, using the above inequality and Fact 4.5, we get

v(St
∗
) = v(Y ) + g(St

∗
)

= v(Y ) + g(St
∗
∪ {it∗+1})

−
(
g(St

∗
∪ {it∗+1})− g(St

∗
)
)

≥ v(Y ) + (1− e−1)g(S∗)− (1− e−1)εopt(S,B)

−
(
v(St

∗
∪ {it∗+1})− v(St

∗
)
)

≥ v(Y ) + (1− e−1)g(S∗)− εopt(S,B)− 1

3
v(Y )

≥ (1− e−1 − ε)opt(S,B) .

Since in both cases the final output T ∗ of the algorithm
has value at least v(St

∗
), this implies that

v(T ∗) ≥ (1− e−1 − ε)opt(S,B)

≥ 1− e−1 − ε
2

opt(A,B)

>

(
e− 1

2e
− ε
)
opt(A,B) ,

thus concluding the analysis of the performance of the
algorithm.

Note that the number of oracle value queries of Var-
Greedy, i.e., O(n5), dominates the number of value queries
of LS-Greedy for constant ε.
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